BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24361443)

  • 1. Development of a conceptual framework for evaluation of nanomaterials release from nanocomposites: environmental and toxicological implications.
    Ging J; Tejerina-Anton R; Ramakrishnan G; Nielsen M; Murphy K; Gorham JM; Nguyen T; Orlov A
    Sci Total Environ; 2014 Mar; 473-474():9-19. PubMed ID: 24361443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of engineered nanomaterials from polymer nanocomposites: the effect of matrix degradation.
    Duncan TV
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):20-39. PubMed ID: 25397693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative evaluation of released nanomaterials from carbon nanotube epoxy nanocomposites during environmental exposure and mechanical treatment.
    Zhao Y; Goodwin DG; Sung L; Ramakrishnan G; Wu Q; Cen J; Petersen EJ; Orlov A
    NanoImpact; 2023 Oct; 32():100486. PubMed ID: 37777181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release of (14)C-labelled carbon nanotubes from polycarbonate composites.
    Rhiem S; Barthel AK; Meyer-Plath A; Hennig MP; Wachtendorf V; Sturm H; Schäffer A; Maes HM
    Environ Pollut; 2016 Aug; 215():356-365. PubMed ID: 27194367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of engineered nanomaterials from polymer nanocomposites: diffusion, dissolution, and desorption.
    Duncan TV; Pillai K
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):2-19. PubMed ID: 25485689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conceptual modeling for identification of worst case conditions in environmental risk assessment of nanomaterials using nZVI and C60 as case studies.
    Grieger KD; Hansen SF; Sørensen PB; Baun A
    Sci Total Environ; 2011 Sep; 409(19):4109-24. PubMed ID: 21737121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review and perspective of existing research on the release of nanomaterials from solid nanocomposites.
    Froggett SJ; Clancy SF; Boverhof DR; Canady RA
    Part Fibre Toxicol; 2014 Apr; 11():17. PubMed ID: 24708765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites: role of interfacial interactions.
    Khare KS; Khare R
    J Phys Chem B; 2013 Jun; 117(24):7444-54. PubMed ID: 23691970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile route to isotropic conductive nanocomposites by direct polymer infiltration of carbon nanotube sponges.
    Gui X; Li H; Zhang L; Jia Y; Liu L; Li Z; Wei J; Wang K; Zhu H; Tang Z; Wu D; Cao A
    ACS Nano; 2011 Jun; 5(6):4276-83. PubMed ID: 21591806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weathering of a carbon nanotube/epoxy nanocomposite under UV light and in water bath: impact on abraded particles.
    Schlagenhauf L; Kianfar B; Buerki-Thurnherr T; Kuo YY; Wichser A; Nüesch F; Wick P; Wang J
    Nanoscale; 2015 Nov; 7(44):18524-36. PubMed ID: 26490158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the lifecycle of nanocomposites: comparing released fragments and their in-vivo hazards from three release mechanisms and four nanocomposites.
    Wohlleben W; Brill S; Meier MW; Mertler M; Cox G; Hirth S; von Vacano B; Strauss V; Treumann S; Wiench K; Ma-Hock L; Landsiedel R
    Small; 2011 Aug; 7(16):2384-95. PubMed ID: 21671434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragmentation and release of pristine and functionalized carbon nanotubes from epoxy-nanocomposites during accelerated weathering.
    Sahle-Demessie E; Han C; Varughese E; Acrey B; Zepp R
    Environ Sci Nano; 2023 Apr; 10(7):1812-1827. PubMed ID: 37849916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density.
    Marconnet AM; Yamamoto N; Panzer MA; Wardle BL; Goodson KE
    ACS Nano; 2011 Jun; 5(6):4818-25. PubMed ID: 21598962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradability of carbon nanotube/polymer nanocomposites under aerobic mixed culture conditions.
    Phan DC; Goodwin DG; Frank BP; Bouwer EJ; Fairbrother DH
    Sci Total Environ; 2018 Oct; 639():804-814. PubMed ID: 29803051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The carcinogenic potential of nanomaterials, their release from products and options for regulating them.
    Becker H; Herzberg F; Schulte A; Kolossa-Gehring M
    Int J Hyg Environ Health; 2011 Jun; 214(3):231-8. PubMed ID: 21168363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanowastes and the environment: using mercury as an example pollutant to assess the environmental fate of chemicals adsorbed onto manufactured nanomaterials.
    Gao J; Bonzongo JC; Bitton G; Li Y; Wu CY
    Environ Toxicol Chem; 2008 Apr; 27(4):808-10. PubMed ID: 18333679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of techniques and studies characterizing the release of carbon nanotubes from nanocomposites: Implications for exposure and human health risk assessment.
    Kovochich M; Fung CD; Avanasi R; Madl AK
    J Expo Sci Environ Epidemiol; 2018 May; 28(3):203-215. PubMed ID: 28561036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Γ-Al₂O₃-based nanocomposite adsorbents for arsenic(V) removal: assessing performance, toxicity and particle leakage.
    Onnby L; Svensson C; Mbundi L; Busquets R; Cundy A; Kirsebom H
    Sci Total Environ; 2014 Mar; 473-474():207-14. PubMed ID: 24370695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The release of engineered nanomaterials to the environment.
    Gottschalk F; Nowack B
    J Environ Monit; 2011 May; 13(5):1145-55. PubMed ID: 21387066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental implications of nanomaterials: are we studying the right thing?
    Turco RF; Bischoff M; Tong ZH; Nies L
    Curr Opin Biotechnol; 2011 Aug; 22(4):527-32. PubMed ID: 21742482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.