These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24361491)

  • 61. Surfactant-Enhanced Electroosmotic Flushing in a Trichlorobenzene Contaminated Clayey Soil.
    Qiao W; Ye S; Wu J; Zhang M
    Ground Water; 2018 Jul; 56(4):673-679. PubMed ID: 29320601
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Rhamnolipid morphology and phenanthrene solubility at different pH values.
    Shin KH; Kim KW; Kim JY; Lee KE; Han SS
    J Environ Qual; 2008; 37(2):509-14. PubMed ID: 18268315
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Study of the desorption of linuron from soils to water enhanced by the addition of an anionic surfactant to soil-water system.
    Sánchez-Martín MJ; Rodríguez-Cruz MS; Sánchez-Camazano M
    Water Res; 2003 Jul; 37(13):3110-7. PubMed ID: 14509697
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Linking desorption kinetics to phenanthrene biodegradation in soil.
    Rhodes AH; McAllister LE; Semple KT
    Environ Pollut; 2010 May; 158(5):1348-53. PubMed ID: 20172637
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sand sorption process for the removal of sodium dodecyl sulfate (anionic surfactant) from water.
    Khan MN; Zareen U
    J Hazard Mater; 2006 May; 133(1-3):269-75. PubMed ID: 16298043
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Near-anode focusing phenomenon caused by the high anolyte concentration in the electrokinetic remediation of chromium(VI)-contaminated soil.
    Li D; Xiong Z; Nie Y; Niu YY; Wang L; Liu YY
    J Hazard Mater; 2012 Aug; 229-230():282-91. PubMed ID: 22738769
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Facilitated transport of 2,2',5,5'-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sandy soil columns.
    Zhang L; Wang L; Zhang P; Kan AT; Chen W; Tomson MB
    Environ Sci Technol; 2011 Feb; 45(4):1341-8. PubMed ID: 21254786
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Simultaneous removal of 2,4-dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal.
    Ma JW; Wang FY; Huang ZH; Wang H
    J Hazard Mater; 2010 Apr; 176(1-3):715-20. PubMed ID: 20006426
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effect of soil chemical properties on the remediation of phenanthrene-contaminated soil by electrokinetic-Fenton process.
    Kim JH; Han SJ; Kim SS; Yang JW
    Chemosphere; 2006 Jun; 63(10):1667-76. PubMed ID: 16310828
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Evaluation of soil flushing of complex contaminated soil: an experimental and modeling simulation study.
    Yun SM; Kang CS; Kim J; Kim HS
    J Hazard Mater; 2015 Apr; 287():429-37. PubMed ID: 25698434
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Scale-up of the electrokinetic fence technology for the removal of pesticides. Part I: Some notes about the transport of inorganic species.
    López-Vizcaíno R; Risco C; Isidro J; Rodrigo S; Saez C; Cañizares P; Navarro V; Rodrigo MA
    Chemosphere; 2017 Jan; 166():540-548. PubMed ID: 27692680
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Phenanthrene removal from the contaminated soil using the electrokinetic-Fenton method and persulfate as an oxidizing agent.
    Adhami S; Jamshidi-Zanjani A; Darban AK
    Chemosphere; 2021 Mar; 266():128988. PubMed ID: 33243569
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Synergistic effects of inorganic salt and surfactant on phenanthrene removal from aqueous solution by sediment.
    Zhang X; Wu Y; Hu S; Lu C
    Water Sci Technol; 2014; 70(8):1329-34. PubMed ID: 25353936
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A biosurfactant-enhanced soil flushing for the removal of phenanthrene and diesel in sand.
    Shin KH; Kim KW
    Environ Geochem Health; 2004 Mar; 26(1):5-11. PubMed ID: 15214609
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Enhanced transport of phenanthrene and 1-naphthol by colloidal graphene oxide nanoparticles in saturated soil.
    Qi Z; Hou L; Zhu D; Ji R; Chen W
    Environ Sci Technol; 2014 Sep; 48(17):10136-44. PubMed ID: 25099876
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Electrokinetic effects on the interaction of phenanthrene with geo-sorbents.
    Shan Y; Qin J; Harms H; Wick LY
    Chemosphere; 2020 Mar; 242():125161. PubMed ID: 31683161
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Enhanced electrokinetic removal of phenanthrene from clay soil by periodic electric potential application.
    Reddy KR; Saichek RE
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(5):1189-212. PubMed ID: 15137692
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A laboratory feasibility study on a new electrokinetic nutrient injection pattern and bioremediation of phenanthrene in a clayey soil.
    Xu W; Wang C; Liu H; Zhang Z; Sun H
    J Hazard Mater; 2010 Dec; 184(1-3):798-804. PubMed ID: 20870357
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Reversible electrokinetic adsorption barriers for the removal of organochlorine herbicide from spiked soils.
    Rodrigo S; Saez C; Cañizares P; Rodrigo MA
    Sci Total Environ; 2018 Nov; 640-641():629-636. PubMed ID: 29870938
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Use of model soil colloids to evaluate adsorption of phenanthrene and its mobilization by different solutions.
    Negre M; Boursier C; Abbate C; Baglieri A; Gennari M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Apr; 43(5):443-51. PubMed ID: 18324530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.