BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 24361516)

  • 1. Phototrophic bacteria for nutrient recovery from domestic wastewater.
    Hülsen T; Batstone DJ; Keller J
    Water Res; 2014 Mar; 50():18-26. PubMed ID: 24361516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor.
    Hülsen T; Barry EM; Lu Y; Puyol D; Keller J; Batstone DJ
    Water Res; 2016 Sep; 100():486-495. PubMed ID: 27232993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purple phototrophic bacteria are outcompeted by aerobic heterotrophs in the presence of oxygen.
    Capson-Tojo G; Lin S; Batstone DJ; Hülsen T
    Water Res; 2021 Apr; 194():116941. PubMed ID: 33640750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purple phototrophic bacteria for resource recovery: Challenges and opportunities.
    Capson-Tojo G; Batstone DJ; Grassino M; Vlaeminck SE; Puyol D; Verstraete W; Kleerebezem R; Oehmen A; Ghimire A; Pikaar I; Lema JM; Hülsen T
    Biotechnol Adv; 2020 Nov; 43():107567. PubMed ID: 32470594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enrichment and Aggregation of Purple Non-sulfur Bacteria in a Mixed-Culture Sequencing-Batch Photobioreactor for Biological Nutrient Removal From Wastewater.
    Cerruti M; Stevens B; Ebrahimi S; Alloul A; Vlaeminck SE; Weissbrodt DG
    Front Bioeng Biotechnol; 2020; 8():557234. PubMed ID: 33392158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saline wastewater treatment with purple phototrophic bacteria.
    Hülsen T; Hsieh K; Batstone DJ
    Water Res; 2019 Sep; 160():259-267. PubMed ID: 31154123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volatile fatty acids impacting phototrophic growth kinetics of purple bacteria: Paving the way for protein production on fermented wastewater.
    Alloul A; Wuyts S; Lebeer S; Vlaeminck SE
    Water Res; 2019 Apr; 152():138-147. PubMed ID: 30665160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autotrophic sulfide removal by mixed culture purple phototrophic bacteria.
    Egger F; Hülsen T; Tait S; Batstone DJ
    Water Res; 2020 Sep; 182():115896. PubMed ID: 32830101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion.
    Ge H; Batstone DJ; Keller J
    Water Res; 2013 Nov; 47(17):6546-57. PubMed ID: 24045213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous treatment and single cell protein production from agri-industrial wastewaters using purple phototrophic bacteria or microalgae - A comparison.
    Hülsen T; Hsieh K; Lu Y; Tait S; Batstone DJ
    Bioresour Technol; 2018 Apr; 254():214-223. PubMed ID: 29413925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. White and infrared light continuous photobioreactors for resource recovery from poultry processing wastewater - A comparison.
    Hülsen T; Hsieh K; Tait S; Barry EM; Puyol D; Batstone DJ
    Water Res; 2018 Nov; 144():665-676. PubMed ID: 30096692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contamination of N-poor wastewater with emerging pollutants does not affect the performance of purple phototrophic bacteria and the subsequent resource recovery potential.
    de Las Heras I; Molina R; Segura Y; Hülsen T; Molina MC; Gonzalez-Benítez N; Melero JA; Mohedano AF; Martínez F; Puyol D
    J Hazard Mater; 2020 Mar; 385():121617. PubMed ID: 31740298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment.
    Kong Z; Feng C; Chen N; Tong S; Zhang B; Hao C; Chen K
    Bioresour Technol; 2014 May; 159():272-9. PubMed ID: 24657758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors.
    Posadas E; García-Encina PA; Soltau A; Domínguez A; Díaz I; Muñoz R
    Bioresour Technol; 2013 Jul; 139():50-8. PubMed ID: 23644070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Outdoor demonstration-scale flat plate photobioreactor for resource recovery with purple phototrophic bacteria.
    Hülsen T; Züger C; Gan ZM; Batstone DJ; Solley D; Ochre P; Porter B; Capson-Tojo G
    Water Res; 2022 Jun; 216():118327. PubMed ID: 35339970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of carbon and nutrients from domestic wastewater using a low investment, integrated treatment concept.
    Aiyuk S; Amoako J; Raskin L; van Haandel A; Verstraete W
    Water Res; 2004 Jul; 38(13):3031-42. PubMed ID: 15261541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Self-driven Microbial Nutrient Recovery Cell with Simultaneous Wastewater Purification.
    Chen X; Sun D; Zhang X; Liang P; Huang X
    Sci Rep; 2015 Oct; 5():15744. PubMed ID: 26503712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechanistic model for anaerobic phototrophs in domestic wastewater applications: Photo-anaerobic model (PAnM).
    Puyol D; Barry EM; Hülsen T; Batstone DJ
    Water Res; 2017 Jun; 116():241-253. PubMed ID: 28347950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achieving nitrogen and phosphorus removal at low C/N ratios without aeration through a novel phototrophic process.
    Carvalho VCF; Kessler M; Fradinho JC; Oehmen A; Reis MAM
    Sci Total Environ; 2021 Nov; 793():148501. PubMed ID: 34171805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.