These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 24361554)
1. Temporal and spatial increase of reactive nitrogen species in the kainate model of temporal lobe epilepsy. Ryan K; Liang LP; Rivard C; Patel M Neurobiol Dis; 2014 Apr; 64():8-15. PubMed ID: 24361554 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy. Rowley S; Liang LP; Fulton R; Shimizu T; Day B; Patel M Neurobiol Dis; 2015 Mar; 75():151-8. PubMed ID: 25600213 [TBL] [Abstract][Full Text] [Related]
4. 1400W, a highly selective inducible nitric oxide synthase inhibitor is a potential disease modifier in the rat kainate model of temporal lobe epilepsy. Puttachary S; Sharma S; Verma S; Yang Y; Putra M; Thippeswamy A; Luo D; Thippeswamy T Neurobiol Dis; 2016 Sep; 93():184-200. PubMed ID: 27208748 [TBL] [Abstract][Full Text] [Related]
5. Persistent impairment of mitochondrial and tissue redox status during lithium-pilocarpine-induced epileptogenesis. Waldbaum S; Liang LP; Patel M J Neurochem; 2010 Dec; 115(5):1172-82. PubMed ID: 21219330 [TBL] [Abstract][Full Text] [Related]
7. Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy. Sha LZ; Xing XL; Zhang D; Yao Y; Dou WC; Jin LR; Wu LW; Xu Q PLoS One; 2012; 7(6):e39152. PubMed ID: 22761730 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Rowley S; Patel M Free Radic Biol Med; 2013 Sep; 62():121-131. PubMed ID: 23411150 [TBL] [Abstract][Full Text] [Related]
9. Neuroprotective and anticonvulsant effects of sinomenine in kainate rat model of temporal lobe epilepsy: Involvement of oxidative stress, inflammation and pyroptosis. Ramazi S; Fahanik-Babaei J; Mohamadi-Zarch SM; Tashakori-Miyanroudi M; Nourabadi D; Nazari-Serenjeh M; Roghani M; Baluchnejadmojarad T J Chem Neuroanat; 2020 Oct; 108():101800. PubMed ID: 32430101 [TBL] [Abstract][Full Text] [Related]
10. Seizure-mediated iron accumulation and dysregulated iron metabolism after status epilepticus and in temporal lobe epilepsy. Zimmer TS; David B; Broekaart DWM; Schidlowski M; Ruffolo G; Korotkov A; van der Wel NN; van Rijen PC; Mühlebner A; van Hecke W; Baayen JC; Idema S; François L; van Eyll J; Dedeurwaerdere S; Kessels HW; Surges R; Rüber T; Gorter JA; Mills JD; van Vliet EA; Aronica E Acta Neuropathol; 2021 Oct; 142(4):729-759. PubMed ID: 34292399 [TBL] [Abstract][Full Text] [Related]
11. Altered mitochondrial acetylation profiles in a kainic acid model of temporal lobe epilepsy. Gano LB; Liang LP; Ryan K; Michel CR; Gomez J; Vassilopoulos A; Reisdorph N; Fritz KS; Patel M Free Radic Biol Med; 2018 Aug; 123():116-124. PubMed ID: 29778462 [TBL] [Abstract][Full Text] [Related]
12. Various modifications of the intrahippocampal kainate model of mesial temporal lobe epilepsy in rats fail to resolve the marked rat-to-mouse differences in type and frequency of spontaneous seizures in this model. Klee R; Brandt C; Töllner K; Löscher W Epilepsy Behav; 2017 Mar; 68():129-140. PubMed ID: 28167446 [TBL] [Abstract][Full Text] [Related]
13. Remarkable alterations of Nav1.6 in reactive astrogliosis during epileptogenesis. Zhu H; Zhao Y; Wu H; Jiang N; Wang Z; Lin W; Jin J; Ji Y Sci Rep; 2016 Dec; 6():38108. PubMed ID: 27905510 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of disease-modifying effect of saracatinib (AZD0530), a Src/Fyn tyrosine kinase inhibitor, in the rat kainate model of temporal lobe epilepsy. Sharma S; Carlson S; Gregory-Flores A; Hinojo-Perez A; Olson A; Thippeswamy T Neurobiol Dis; 2021 Aug; 156():105410. PubMed ID: 34087381 [TBL] [Abstract][Full Text] [Related]
15. N-methyl-D-aspartate receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the kainate model of temporal lobe epilepsy. Brandt C; Potschka H; Löscher W; Ebert U Neuroscience; 2003; 118(3):727-40. PubMed ID: 12710980 [TBL] [Abstract][Full Text] [Related]
16. Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy. Pearson JN; Rowley S; Liang LP; White AM; Day BJ; Patel M Neurobiol Dis; 2015 Oct; 82():289-297. PubMed ID: 26184893 [TBL] [Abstract][Full Text] [Related]
17. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. Zeng LH; Rensing NR; Wong M J Neurosci; 2009 May; 29(21):6964-72. PubMed ID: 19474323 [TBL] [Abstract][Full Text] [Related]
18. Nitroxide antioxidant as a potential strategy to attenuate the oxidative/nitrosative stress induced by hydrogen peroxide plus nitric oxide in cultured neurons. Lee CT; Yu LE; Wang JY Nitric Oxide; 2016 Apr; 54():38-50. PubMed ID: 26891889 [TBL] [Abstract][Full Text] [Related]
19. Conditional Knock-out of mGluR5 from Astrocytes during Epilepsy Development Impairs High-Frequency Glutamate Uptake. Umpierre AD; West PJ; White JA; Wilcox KS J Neurosci; 2019 Jan; 39(4):727-742. PubMed ID: 30504280 [TBL] [Abstract][Full Text] [Related]
20. GABA(A) receptor subunits in the rat hippocampus II: altered distribution in kainic acid-induced temporal lobe epilepsy. Schwarzer C; Tsunashima K; Wanzenböck C; Fuchs K; Sieghart W; Sperk G Neuroscience; 1997 Oct; 80(4):1001-17. PubMed ID: 9284056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]