These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 24361668)
1. In situ observation of heat- and pressure-induced gelation of methylcellulose by fluorescence measurement. Su L; Wang Z; Yang K; Minamikawa Y; Kometani N; Nishinari K Int J Biol Macromol; 2014 Mar; 64():409-14. PubMed ID: 24361668 [TBL] [Abstract][Full Text] [Related]
2. Interplay between gelation and phase separation in aqueous solutions of methylcellulose and hydroxypropylmethylcellulose. Fairclough JP; Yu H; Kelly O; Ryan AJ; Sammler RL; Radler M Langmuir; 2012 Jul; 28(28):10551-7. PubMed ID: 22694273 [TBL] [Abstract][Full Text] [Related]
3. In situ observation of gelation of methylcellulose aqueous solution with viscosity measuring instrument in the diamond anvil cell. Wang Z; Yang K; Li H; Yuan C; Zhu X; Huang H; Wang Y; Su L; Nishinari K; Fang Y Carbohydr Polym; 2018 Jun; 190():190-195. PubMed ID: 29628237 [TBL] [Abstract][Full Text] [Related]
4. In situ observation of sol-gel transition of agarose aqueous solution by fluorescence measurement. Wang Z; Yang K; Li H; Yuan C; Zhu X; Huang H; Wang Y; Su L; Fang Y Int J Biol Macromol; 2018 Jun; 112():803-808. PubMed ID: 29425863 [TBL] [Abstract][Full Text] [Related]
5. In Situ Observations of Thermoreversible Gelation and Phase Separation of Agarose and Methylcellulose Solutions under High Pressure. Kometani N; Tanabe M; Su L; Yang K; Nishinari K J Phys Chem B; 2015 Jun; 119(22):6878-83. PubMed ID: 25984597 [TBL] [Abstract][Full Text] [Related]
6. Effect of salts on gelation and drug release profiles of methylcellulose-based ophthalmic thermo-reversible in situ gels. Bhowmik M; Bain MK; Ghosh LK; Chattopadhyay D Pharm Dev Technol; 2011 Aug; 16(4):385-91. PubMed ID: 20429816 [TBL] [Abstract][Full Text] [Related]
7. Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Cai J; Zhang L Biomacromolecules; 2006 Jan; 7(1):183-9. PubMed ID: 16398514 [TBL] [Abstract][Full Text] [Related]
8. Effect of solvent state and isothermal conditions on gelation of methylcellulose hydrogels. Joshi SC; Liang CM; Lam YC J Biomater Sci Polym Ed; 2008; 19(12):1611-23. PubMed ID: 19017474 [TBL] [Abstract][Full Text] [Related]
9. Phase behavior of concentrated hydroxypropyl methylcellulose solution in the presence of mono and divalent salt. Almeida N; Rakesh L; Zhao J Carbohydr Polym; 2014 Jan; 99():630-7. PubMed ID: 24274553 [TBL] [Abstract][Full Text] [Related]
10. A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Liu W; Zhang B; Lu WW; Li X; Zhu D; De Yao K; Wang Q; Zhao C; Wang C Biomaterials; 2004 Jul; 25(15):3005-12. PubMed ID: 14967533 [TBL] [Abstract][Full Text] [Related]
11. A thermoreversible double gel: characterization of a methylcellulose and kappa-carrageenan mixed system in water by SAXS, DSC and rheology. Tomsic M; Prossnigg F; Glatter O J Colloid Interface Sci; 2008 Jun; 322(1):41-50. PubMed ID: 18417143 [TBL] [Abstract][Full Text] [Related]
12. Mechanical characterization of network formation during heat-induced gelation of whey protein dispersions. Ikeda S; Nishinari K; Foegeding EA Biopolymers; 2000-2001; 56(2):109-19. PubMed ID: 11592057 [TBL] [Abstract][Full Text] [Related]
13. Structure and properties of aqueous methylcellulose gels by small-angle neutron scattering. Chatterjee T; Nakatani AI; Adden R; Brackhagen M; Redwine D; Shen H; Li Y; Wilson T; Sammler RL Biomacromolecules; 2012 Oct; 13(10):3355-69. PubMed ID: 22994294 [TBL] [Abstract][Full Text] [Related]
14. Synergistic effect of salt mixture on the gelation temperature and morphology of methylcellulose hydrogel. Bain MK; Bhowmick B; Maity D; Mondal D; Mollick MM; Rana D; Chattopadhyay D Int J Biol Macromol; 2012 Dec; 51(5):831-6. PubMed ID: 22884434 [TBL] [Abstract][Full Text] [Related]
15. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water. Xu Y; Wang C; Tam KC; Li L Langmuir; 2004 Feb; 20(3):646-52. PubMed ID: 15773087 [TBL] [Abstract][Full Text] [Related]
16. Physical properties of acid milk gels prepared at 37 degrees C up to gelation but at different incubation temperatures for the remainder of fermentation. Peng Y; Horne DS; Lucey JA J Dairy Sci; 2010 May; 93(5):1910-7. PubMed ID: 20412904 [TBL] [Abstract][Full Text] [Related]
17. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid). Jin N; Zhang H; Jin S; Dadmun MD; Zhao B J Phys Chem B; 2012 Mar; 116(10):3125-37. PubMed ID: 22352399 [TBL] [Abstract][Full Text] [Related]
18. Rheological properties of reversible thermo-setting in situ gelling solutions with the methylcellulose-polyethylene glycol-citric acid ternary system (2): Effects of various water-soluble polymers and salts on the gelling temperature. Shimokawa K; Saegusa K; Ishii F Colloids Surf B Biointerfaces; 2009 Nov; 74(1):56-8. PubMed ID: 19615868 [TBL] [Abstract][Full Text] [Related]
19. Effect of PVA on the gel temperature of MC and release kinetics of KT from MC based ophthalmic formulations. Bain MK; Bhowmick B; Maity D; Mondal D; Mollick MM; Paul BK; Bhowmik M; Rana D; Chattopadhyay D Int J Biol Macromol; 2012 Apr; 50(3):565-72. PubMed ID: 22301004 [TBL] [Abstract][Full Text] [Related]