These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 24361730)

  • 1. A method for mapping flood hazard along roads.
    Kalantari Z; Nickman A; Lyon SW; Olofsson B; Folkeson L
    J Environ Manage; 2014 Jan; 133():69-77. PubMed ID: 24361730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing flood probability for transportation infrastructure based on catchment characteristics, sediment connectivity and remotely sensed soil moisture.
    Kalantari Z; Ferreira CSS; Koutsouris AJ; Ahlmer AK; Cerdà A; Destouni G
    Sci Total Environ; 2019 Apr; 661():393-406. PubMed ID: 30677685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flood hazard delineation in an ungauged catchment by coupling hydrologic and hydraulic models with geospatial techniques-a case study of Koraiyar basin, Tiruchirappalli City, Tamil Nadu, India.
    Natarajan S; Radhakrishnan N
    Environ Monit Assess; 2020 Oct; 192(11):689. PubMed ID: 33030599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon
    Khosravi K; Pourghasemi HR; Chapi K; Bahri M
    Environ Monit Assess; 2016 Dec; 188(12):656. PubMed ID: 27826821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a screening method to assess flood risk on danish national roads and highway systems.
    Nielsen NH; Larsen MR; Rasmussen SF
    Water Sci Technol; 2011; 63(12):2957-66. PubMed ID: 22049725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GIS-based flood hazard mapping using relative frequency ratio method: A case study of Panjkora River Basin, eastern Hindu Kush, Pakistan.
    Ullah K; Zhang J
    PLoS One; 2020; 15(3):e0229153. PubMed ID: 32210424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flood susceptibility in rural settlements in remote zones: The case of a mountainous basin in the Sierra-Costa region of Michoacán, Mexico.
    González-Arqueros ML; Mendoza ME; Bocco G; Solís Castillo B
    J Environ Manage; 2018 Oct; 223():685-693. PubMed ID: 29975896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flood probability quantification for road infrastructure: Data-driven spatial-statistical approach and case study applications.
    Kalantari Z; Cavalli M; Cantone C; Crema S; Destouni G
    Sci Total Environ; 2017 Mar; 581-582():386-398. PubMed ID: 28062101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the knock-on effects of flooding on road transportation.
    Pyatkova K; Chen AS; Butler D; Vojinović Z; Djordjević S
    J Environ Manage; 2019 Aug; 244():48-60. PubMed ID: 31108310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evacuation planning for plausible worst case inundation scenarios in Honolulu, Hawaii.
    Kim K; Pant P; Yamashita E
    J Emerg Manag; 2015; 13(2):93-108. PubMed ID: 25902293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flood Hazard Assessment and Mapping: A Case Study from Australia's Hawkesbury-Nepean Catchment.
    Kelly M; Kuleshov Y
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Street floods in Metro Manila and possible solutions.
    Lagmay AM; Mendoza J; Cipriano F; Delmendo PA; Lacsamana MN; Moises MA; Pellejera N; Punay KN; Sabio G; Santos L; Serrano J; Taniza HJ; Tingin NE
    J Environ Sci (China); 2017 Sep; 59():39-47. PubMed ID: 28888237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flood vulnerability indices at varying spatial scales.
    Balica SF; Douben N; Wright NG
    Water Sci Technol; 2009; 60(10):2571-80. PubMed ID: 19923763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting and communicating flood risk of transport infrastructure based on watershed characteristics.
    Michielsen A; Kalantari Z; Lyon SW; Liljegren E
    J Environ Manage; 2016 Nov; 182():505-518. PubMed ID: 27526088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A national scale flood hazard mapping methodology: The case of Greece - Protection and adaptation policy approaches.
    Kourgialas NN; Karatzas GP
    Sci Total Environ; 2017 Dec; 601-602():441-452. PubMed ID: 28575822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploratory regression modeling for flood susceptibility mapping in the GIS environment.
    Fenglin W; Ahmad I; Zelenakova M; Fenta A; Dar MA; Teka AH; Belew AZ; Damtie M; Berhan M; Shafi SN
    Sci Rep; 2023 Jan; 13(1):247. PubMed ID: 36604535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tight coupling 2D integrated urban inundation model on GIS to a high-density area, South Korea.
    Kang SH
    Water Sci Technol; 2009; 60(2):283-92. PubMed ID: 19633369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of flood peak effects as a result of soil and land management, with focus on experimental issues and scale.
    Deasy C; Titman A; Quinton JN
    J Environ Manage; 2014 Jan; 132():304-12. PubMed ID: 24325823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flood hazard mapping using geospatial techniques and satellite images-a case study of coastal district of Tamil Nadu.
    Thirumurugan P; Krishnaveni M
    Environ Monit Assess; 2019 Feb; 191(3):193. PubMed ID: 30810867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flood analysis in mixed-urban areas reflecting interactions with the complete water cycle through coupled hydrologic-hydraulic modelling.
    Sto Domingo ND; Refsgaard A; Mark O; Paludan B
    Water Sci Technol; 2010; 62(6):1386-92. PubMed ID: 20861554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.