BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 24361924)

  • 1. Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications.
    Russo V; Yu C; Belliveau P; Hamilton A; Flynn LE
    Stem Cells Transl Med; 2014 Feb; 3(2):206-17. PubMed ID: 24361924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Stromal/Stem Cells Isolated from Human Omental and Subcutaneous Adipose Depots: Differentiation and Immunophenotypic Characterization.
    Shah FS; Li J; Dietrich M; Wu X; Hausmann MG; LeBlanc KA; Wade JW; Gimble JM
    Cells Tissues Organs; 2014; 200(3-4):204-11. PubMed ID: 26089088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene expression profiles of human subcutaneous and visceral adipose-derived stem cells.
    Kim B; Lee B; Kim MK; Gong SP; Park NH; Chung HH; Kim HS; No JH; Park WY; Park AK; Lim JM; Song YS
    Cell Biochem Funct; 2016 Dec; 34(8):563-571. PubMed ID: 27859461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stemness and osteogenic and adipogenic potential are differently impaired in subcutaneous and visceral adipose derived stem cells (ASCs) isolated from obese donors.
    De Girolamo L; Stanco D; Salvatori L; Coroniti G; Arrigoni E; Silecchia G; Russo MA; Niada S; Petrangeli E; Brini AT
    Int J Immunopathol Pharmacol; 2013; 26(1 Suppl):11-21. PubMed ID: 24046945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subcutaneous and Visceral Adipose-Derived Mesenchymal Stem Cells: Commonality and Diversity.
    Ritter A; Friemel A; Roth S; Kreis NN; Hoock SC; Safdar BK; Fischer K; Möllmann C; Solbach C; Louwen F; Yuan J
    Cells; 2019 Oct; 8(10):. PubMed ID: 31640218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gluteal and abdominal subcutaneous adipose tissue depots as stroma cell source: gluteal cells display increased adipogenic and osteogenic differentiation potentials.
    Iwen KA; Priewe AC; Winnefeld M; Rose C; Siemers F; Rohwedel J; Cakiroglu F; Lehnert H; Schepky A; Klein J; Kramer J
    Exp Dermatol; 2014 Jun; 23(6):395-400. PubMed ID: 24689514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multipotency and cardiomyogenic potential of human adipose-derived stem cells from epicardium, pericardium, and omentum.
    Wystrychowski W; Patlolla B; Zhuge Y; Neofytou E; Robbins RC; Beygui RE
    Stem Cell Res Ther; 2016 Jun; 7(1):84. PubMed ID: 27296220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and comparison of adipose tissue-derived cells from human subcutaneous and omental adipose tissues.
    Toyoda M; Matsubara Y; Lin K; Sugimachi K; Furue M
    Cell Biochem Funct; 2009 Oct; 27(7):440-7. PubMed ID: 19691084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in gene expression and cytokine release profiles highlight the heterogeneity of distinct subsets of adipose tissue-derived stem cells in the subcutaneous and visceral adipose tissue in humans.
    Perrini S; Ficarella R; Picardi E; Cignarelli A; Barbaro M; Nigro P; Peschechera A; Palumbo O; Carella M; De Fazio M; Natalicchio A; Laviola L; Pesole G; Giorgino F
    PLoS One; 2013; 8(3):e57892. PubMed ID: 23526958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation methods, proliferation, and adipogenic differentiation of adipose-derived stem cells from different fat depots in bovines.
    Zhu R; Feng Y; Li R; Wei K; Ma Y; Liu Q; Shi D; Huang J
    Mol Cell Biochem; 2024 Mar; 479(3):643-652. PubMed ID: 37148505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of stemness and multipotency of equine adipose-derived mesenchymal stem cells (ASCs) from different fat sources in comparison with lipoma.
    Arnhold S; Elashry MI; Klymiuk MC; Geburek F
    Stem Cell Res Ther; 2019 Oct; 10(1):309. PubMed ID: 31640774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viability, yield and expansion capability of feline MSCs obtained from subcutaneous and reproductive organ adipose depots.
    Wysong A; Ortiz P; Bittel D; Ott L; Karanu F; Filla M; Stehno-Bittel L
    BMC Vet Res; 2021 Jul; 17(1):244. PubMed ID: 34266445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Cryopreservation on Canine Multipotent Stromal Cells from Subcutaneous and Infrapatellar Adipose Tissue.
    Duan W; Lopez MJ
    Stem Cell Rev Rep; 2016 Apr; 12(2):257-68. PubMed ID: 26537238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of a spontaneously immortalized multipotent mesenchymal cell line derived from mouse subcutaneous adipose tissue.
    Zamperone A; Pietronave S; Merlin S; Colangelo D; Ranaldo G; Medico E; Di Scipio F; Berta GN; Follenzi A; Prat M
    Stem Cells Dev; 2013 Nov; 22(21):2873-84. PubMed ID: 23777308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of specific cell-surface markers of adipose-derived stem cells from subcutaneous and visceral fat depots.
    Ong WK; Tan CS; Chan KL; Goesantoso GG; Chan XH; Chan E; Yin J; Yeo CR; Khoo CM; So JB; Shabbir A; Toh SA; Han W; Sugii S
    Stem Cell Reports; 2014 Feb; 2(2):171-9. PubMed ID: 24527391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Qualitative and quantitative differences of adipose-derived stromal cells from superficial and deep subcutaneous lipoaspirates: a matter of fat.
    Di Taranto G; Cicione C; Visconti G; Isgrò MA; Barba M; Di Stasio E; Stigliano E; Bernardini C; Michetti F; Salgarello M; Lattanzi W
    Cytotherapy; 2015 Aug; 17(8):1076-89. PubMed ID: 26002819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects.
    Van Harmelen V; Röhrig K; Hauner H
    Metabolism; 2004 May; 53(5):632-7. PubMed ID: 15131769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenic Differentiation of Mesenchymal Stromal Cells: A Comparative Analysis Between Human Subcutaneous Adipose Tissue and Dental Pulp.
    D'Alimonte I; Mastrangelo F; Giuliani P; Pierdomenico L; Marchisio M; Zuccarini M; Di Iorio P; Quaresima R; Caciagli F; Ciccarelli R
    Stem Cells Dev; 2017 Jun; 26(11):843-855. PubMed ID: 28287912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in the Osteogenic Differentiation Capacity of Omental Adipose-Derived Stem Cells in Obese Patients With and Without Metabolic Syndrome.
    Oliva-Olivera W; Leiva Gea A; Lhamyani S; Coín-Aragüez L; Alcaide Torres J; Bernal-López MR; García-Luna PP; Morales Conde S; Fernández-Veledo S; El Bekay R; Tinahones FJ
    Endocrinology; 2015 Dec; 156(12):4492-501. PubMed ID: 26372179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Notch signaling pathway activation in normal and hyperglycemic rats differs in the stem cells of visceral and subcutaneous adipose tissue.
    Ferrer-Lorente R; Bejar MT; Badimon L
    Stem Cells Dev; 2014 Dec; 23(24):3034-48. PubMed ID: 25035907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.