These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
379 related articles for article (PubMed ID: 24361933)
1. A micromechanical procedure for viscoelastic characterization of the axons and ECM of the brainstem. Javid S; Rezaei A; Karami G J Mech Behav Biomed Mater; 2014 Feb; 30():290-9. PubMed ID: 24361933 [TBL] [Abstract][Full Text] [Related]
2. A micromechanical procedure for modelling the anisotropic mechanical properties of brain white matter. Abolfathi N; Naik A; Sotudeh Chafi M; Karami G; Ziejewski M Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):249-62. PubMed ID: 18846460 [TBL] [Abstract][Full Text] [Related]
3. A micromechanical hyperelastic modeling of brain white matter under large deformation. Karami G; Grundman N; Abolfathi N; Naik A; Ziejewski M J Mech Behav Biomed Mater; 2009 Jul; 2(3):243-54. PubMed ID: 19627829 [TBL] [Abstract][Full Text] [Related]
4. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation. Ning X; Zhu Q; Lanir Y; Margulies SS J Biomech Eng; 2006 Dec; 128(6):925-33. PubMed ID: 17154695 [TBL] [Abstract][Full Text] [Related]
5. Visco-hyperelastic characterization of human brain white matter micro-level constituents in different strain rates. Ramzanpour M; Hosseini-Farid M; McLean J; Ziejewski M; Karami G Med Biol Eng Comput; 2020 Sep; 58(9):2107-2118. PubMed ID: 32671675 [TBL] [Abstract][Full Text] [Related]
6. Mechanical characterization of brain tissue in simple shear at dynamic strain rates. Rashid B; Destrade M; Gilchrist MD J Mech Behav Biomed Mater; 2013 Dec; 28():71-85. PubMed ID: 23973615 [TBL] [Abstract][Full Text] [Related]
7. Characterization of human passive muscles for impact loads using genetic algorithm and inverse finite element methods. Chawla A; Mukherjee S; Karthikeyan B Biomech Model Mechanobiol; 2009 Feb; 8(1):67-76. PubMed ID: 18293021 [TBL] [Abstract][Full Text] [Related]
8. Mechanical characterization of brain tissue in tension at dynamic strain rates. Rashid B; Destrade M; Gilchrist MD J Mech Behav Biomed Mater; 2014 May; 33():43-54. PubMed ID: 23127641 [TBL] [Abstract][Full Text] [Related]
9. Stress-relaxation response of human menisci under confined compression conditions. Martin Seitz A; Galbusera F; Krais C; Ignatius A; Dürselen L J Mech Behav Biomed Mater; 2013 Oct; 26():68-80. PubMed ID: 23811278 [TBL] [Abstract][Full Text] [Related]
10. Numerical simulation of a relaxation test designed to fit a quasi-linear viscoelastic model for temporomandibular joint discs. Commisso MS; Martínez-Reina J; Mayo J; Domínguez J Proc Inst Mech Eng H; 2013 Feb; 227(2):190-9. PubMed ID: 23513990 [TBL] [Abstract][Full Text] [Related]
11. Applying DTI white matter orientations to finite element head models to examine diffuse TBI under high rotational accelerations. Colgan NC; Gilchrist MD; Curran KM Prog Biophys Mol Biol; 2010 Dec; 103(2-3):304-9. PubMed ID: 20869383 [TBL] [Abstract][Full Text] [Related]
12. Characterizing viscoelastic properties of breast cancer tissue in a mouse model using indentation. Qiu S; Zhao X; Chen J; Zeng J; Chen S; Chen L; Meng Y; Liu B; Shan H; Gao M; Feng Y J Biomech; 2018 Mar; 69():81-89. PubMed ID: 29361276 [TBL] [Abstract][Full Text] [Related]
13. Changes to the viscoelastic properties of brain tissue after traumatic axonal injury. Shafieian M; Darvish KK; Stone JR J Biomech; 2009 Sep; 42(13):2136-42. PubMed ID: 19698945 [TBL] [Abstract][Full Text] [Related]
14. A Three-Dimensional Statistical Volume Element for Histology Informed Micromechanical Modeling of Brain White Matter. Hoursan H; Farahmand F; Ahmadian MT Ann Biomed Eng; 2020 Apr; 48(4):1337-1353. PubMed ID: 31965358 [TBL] [Abstract][Full Text] [Related]
15. The nonlinear elastic and viscoelastic passive properties of left ventricular papillary muscle of a guinea pig heart. Hassan MA; Hamdi M; Noma A J Mech Behav Biomed Mater; 2012 Jan; 5(1):99-109. PubMed ID: 22100084 [TBL] [Abstract][Full Text] [Related]
16. Mechanical characterization of brain tissue in compression at dynamic strain rates. Rashid B; Destrade M; Gilchrist MD J Mech Behav Biomed Mater; 2012 Jun; 10():23-38. PubMed ID: 22520416 [TBL] [Abstract][Full Text] [Related]
17. Coupled experiment/finite element analysis on the mechanical response of porcine brain under high strain rates. Prabhu R; Horstemeyer MF; Tucker MT; Marin EB; Bouvard JL; Sherburn JA; Liao J; Williams LN J Mech Behav Biomed Mater; 2011 Oct; 4(7):1067-80. PubMed ID: 21783116 [TBL] [Abstract][Full Text] [Related]
18. Elastic and viscoelastic properties of porcine subdermal fat using MRI and inverse FEA. Sims AM; Stait-Gardner T; Fong L; Morley JW; Price WS; Hoffman M; Simmons A; Schindhelm K Biomech Model Mechanobiol; 2010 Dec; 9(6):703-11. PubMed ID: 20309602 [TBL] [Abstract][Full Text] [Related]
19. Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation. Demirci N; Tönük E Acta Bioeng Biomech; 2014; 16(4):13-21. PubMed ID: 25597890 [TBL] [Abstract][Full Text] [Related]
20. A viscoelastic analysis of the P56 mouse brain under large-deformation dynamic indentation. MacManus DB; Pierrat B; Murphy JG; Gilchrist MD Acta Biomater; 2017 Jan; 48():309-318. PubMed ID: 27777117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]