These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 24362319)
1. Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles. Pathakoti K; Huang MJ; Watts JD; He X; Hwang HM J Photochem Photobiol B; 2014 Jan; 130():234-40. PubMed ID: 24362319 [TBL] [Abstract][Full Text] [Related]
2. From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles. Sizochenko N; Rasulev B; Gajewicz A; Kuz'min V; Puzyn T; Leszczynski J Nanoscale; 2014 Nov; 6(22):13986-93. PubMed ID: 25317542 [TBL] [Abstract][Full Text] [Related]
3. Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions. Toropova AP; Toropov AA; Rallo R; Leszczynska D; Leszczynski J Ecotoxicol Environ Saf; 2015 Feb; 112():39-45. PubMed ID: 25463851 [TBL] [Abstract][Full Text] [Related]
4. Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: a mechanistic QSTR approach. Kar S; Gajewicz A; Puzyn T; Roy K; Leszczynski J Ecotoxicol Environ Saf; 2014 Sep; 107():162-9. PubMed ID: 24949897 [TBL] [Abstract][Full Text] [Related]
5. Modeling and mechanistic understanding of cytotoxicity of metal oxide nanoparticles (MeOxNPs) to Roy J; Roy K Nanotoxicology; 2022 Mar; 16(2):152-164. PubMed ID: 35166631 [TBL] [Abstract][Full Text] [Related]
6. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Puzyn T; Rasulev B; Gajewicz A; Hu X; Dasari TP; Michalkova A; Hwang HM; Toropov A; Leszczynska D; Leszczynski J Nat Nanotechnol; 2011 Mar; 6(3):175-8. PubMed ID: 21317892 [TBL] [Abstract][Full Text] [Related]
7. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies. Gajewicz A; Schaeublin N; Rasulev B; Hussain S; Leszczynska D; Puzyn T; Leszczynski J Nanotoxicology; 2015 May; 9(3):313-25. PubMed ID: 24983896 [TBL] [Abstract][Full Text] [Related]
8. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Hu X; Cook S; Wang P; Hwang HM Sci Total Environ; 2009 Apr; 407(8):3070-2. PubMed ID: 19215968 [TBL] [Abstract][Full Text] [Related]
9. Machine learning-driven QSAR models for predicting the mixture toxicity of nanoparticles. Zhang F; Wang Z; Peijnenburg WJGM; Vijver MG Environ Int; 2023 Jul; 177():108025. PubMed ID: 37329761 [TBL] [Abstract][Full Text] [Related]
10. The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method. Fjodorova N; Novic M; Gajewicz A; Rasulev B Nanotoxicology; 2017 May; 11(4):475-483. PubMed ID: 28330416 [TBL] [Abstract][Full Text] [Related]
11. Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs. Mu Y; Wu F; Zhao Q; Ji R; Qie Y; Zhou Y; Hu Y; Pang C; Hristozov D; Giesy JP; Xing B Nanotoxicology; 2016 Nov; 10(9):1207-14. PubMed ID: 27309010 [TBL] [Abstract][Full Text] [Related]
12. Comment on "Causation or only correlation? Application of causal inference graphs for evaluating causality in nano-QSAR models" by N. Sizochenko, A. Gajewicz, J. Leszczynski and T. Puzyn, Nanoscale, 2016, 8, 7203. Tasi DA; Csontos J; Nagy B; Kónya Z; Tasi G Nanoscale; 2018 Nov; 10(44):20863-20866. PubMed ID: 30325387 [TBL] [Abstract][Full Text] [Related]
13. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Baek YW; An YJ Sci Total Environ; 2011 Mar; 409(8):1603-8. PubMed ID: 21310463 [TBL] [Abstract][Full Text] [Related]
14. Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria. Dasari TP; Pathakoti K; Hwang HM J Environ Sci (China); 2013 May; 25(5):882-8. PubMed ID: 24218817 [TBL] [Abstract][Full Text] [Related]
15. Novel approach for efficient predictions properties of large pool of nanomaterials based on limited set of species: nano-read-across. Gajewicz A; Cronin MT; Rasulev B; Leszczynski J; Puzyn T Nanotechnology; 2015 Jan; 26(1):015701. PubMed ID: 25473798 [TBL] [Abstract][Full Text] [Related]
17. Extrapolating between toxicity endpoints of metal oxide nanoparticles: Predicting toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) with Nano-QTTR. Kar S; Gajewicz A; Roy K; Leszczynski J; Puzyn T Ecotoxicol Environ Saf; 2016 Apr; 126():238-244. PubMed ID: 26773833 [TBL] [Abstract][Full Text] [Related]
18. Understanding mechanism governing the inflammatory potential of metal oxide nanoparticles using periodic table-based descriptors: a nano-QSAR approach. Roy J; Roy K SAR QSAR Environ Res; 2023; 34(6):459-474. PubMed ID: 37350771 [TBL] [Abstract][Full Text] [Related]
19. Genotoxicity induced by metal oxide nanoparticles: a weight of evidence study and effect of particle surface and electronic properties. Golbamaki A; Golbamaki N; Sizochenko N; Rasulev B; Leszczynski J; Benfenati E Nanotoxicology; 2018 Dec; 12(10):1113-1129. PubMed ID: 29888633 [TBL] [Abstract][Full Text] [Related]
20. Novel application of the CORAL software to model cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli. Toropov AA; Toropova AP; Benfenati E; Gini G; Puzyn T; Leszczynska D; Leszczynski J Chemosphere; 2012 Nov; 89(9):1098-102. PubMed ID: 22704203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]