These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 24362319)
21. Evaluating the cytotoxicity of a large pool of metal oxide nanoparticles to Escherichia coli: Mechanistic understanding through In Vitro and In Silico studies. Kar S; Pathakoti K; Tchounwou PB; Leszczynska D; Leszczynski J Chemosphere; 2021 Feb; 264(Pt 1):128428. PubMed ID: 33022504 [TBL] [Abstract][Full Text] [Related]
22. Quantitative Structure-Activity Relationship Models for Predicting Inflammatory Potential of Metal Oxide Nanoparticles. Huang Y; Li X; Xu S; Zheng H; Zhang L; Chen J; Hong H; Kusko R; Li R Environ Health Perspect; 2020 Jun; 128(6):67010. PubMed ID: 32692251 [TBL] [Abstract][Full Text] [Related]
23. Use of metal/metal oxide spherical cluster and hydroxyl metal coordination complex for descriptor calculation in development of nanoparticle cytotoxicity classification model. Shin HK; Kim KY; Park JW; No KT SAR QSAR Environ Res; 2017 Nov; 28(11):875-888. PubMed ID: 29189078 [TBL] [Abstract][Full Text] [Related]
24. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review. Li J; Wang C; Yue L; Chen F; Cao X; Wang Z Ecotoxicol Environ Saf; 2022 Sep; 243():113955. PubMed ID: 35961199 [TBL] [Abstract][Full Text] [Related]
25. Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides. Basant N; Gupta S Nanotoxicology; 2017 Apr; 11(3):339-350. PubMed ID: 28277981 [TBL] [Abstract][Full Text] [Related]
26. Correlation intensity index: mathematical modeling of cytotoxicity of metal oxide nanoparticles. Ahmadi S; Toropova AP; Toropov AA Nanotoxicology; 2020 Oct; 14(8):1118-1126. PubMed ID: 32877261 [TBL] [Abstract][Full Text] [Related]
27. Predicting the toxicities of metal oxide nanoparticles based on support vector regression with a residual bootstrapping method. Zhai X; Chen M; Lu W Toxicol Mech Methods; 2018 Jul; 28(6):440-449. PubMed ID: 29644916 [TBL] [Abstract][Full Text] [Related]
28. Quantitative structure-activity relationship for cyclic imide derivatives of protoporphyrinogen oxidase inhibitors: a study of quantum chemical descriptors from density functional theory. Wan J; Zhang L; Yang G; Zhan CG J Chem Inf Comput Sci; 2004; 44(6):2099-105. PubMed ID: 15554680 [TBL] [Abstract][Full Text] [Related]
29. Metal oxide nanoparticles with low toxicity. Ng AM; Guo MY; Leung YH; Chan CM; Wong SW; Yung MM; Ma AP; Djurišić AB; Leung FC; Leung KM; Chan WK; Lee HK J Photochem Photobiol B; 2015 Oct; 151():17-24. PubMed ID: 26143160 [TBL] [Abstract][Full Text] [Related]
30. Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Djurišić AB; Leung YH; Ng AM; Xu XY; Lee PK; Degger N; Wu RS Small; 2015 Jan; 11(1):26-44. PubMed ID: 25303765 [TBL] [Abstract][Full Text] [Related]
31. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio. Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559 [TBL] [Abstract][Full Text] [Related]
32. Toxicity of CeO2 nanoparticles - the effect of nanoparticle properties. Leung YH; Yung MM; Ng AM; Ma AP; Wong SW; Chan CM; Ng YH; Djurišić AB; Guo M; Wong MT; Leung FC; Chan WK; Leung KM; Lee HK J Photochem Photobiol B; 2015 Apr; 145():48-59. PubMed ID: 25768267 [TBL] [Abstract][Full Text] [Related]
33. Causation or only correlation? Application of causal inference graphs for evaluating causality in nano-QSAR models. Sizochenko N; Gajewicz A; Leszczynski J; Puzyn T Nanoscale; 2016 Apr; 8(13):7203-8. PubMed ID: 26972917 [TBL] [Abstract][Full Text] [Related]
34. Evaluating genotoxicity of metal oxide nanoparticles: Application of advanced supervised and unsupervised machine learning techniques. Sizochenko N; Syzochenko M; Fjodorova N; Rasulev B; Leszczynski J Ecotoxicol Environ Saf; 2019 Dec; 185():109733. PubMed ID: 31580980 [TBL] [Abstract][Full Text] [Related]
35. Using quasi-SMILES for the predictive modeling of the safety of 574 metal oxide nanoparticles measured in different experimental conditions. Toropova AP; Toropov AA; Leszczynski J; Sizochenko N Environ Toxicol Pharmacol; 2021 Aug; 86():103665. PubMed ID: 33895354 [TBL] [Abstract][Full Text] [Related]
36. Nano-read-across predictions of toxicity of metal oxide engineered nanoparticles (MeOx ENPS) used in nanopesticides to BEAS-2B and RAW 264.7 cells. Roy J; Roy K Nanotoxicology; 2022 Jun; 16(5):629-644. PubMed ID: 36260491 [TBL] [Abstract][Full Text] [Related]
37. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Jiang W; Mashayekhi H; Xing B Environ Pollut; 2009 May; 157(5):1619-25. PubMed ID: 19185963 [TBL] [Abstract][Full Text] [Related]
38. A DFT-based quantum theoretic QSAR study of aromatic and heterocyclic sulfonamides as carbonic anhydrase inhibitors against isozyme, CA-II. Eroglu E; Türkmen H J Mol Graph Model; 2007 Nov; 26(4):701-8. PubMed ID: 17493855 [TBL] [Abstract][Full Text] [Related]
39. Development of structure-activity relationship for metal oxide nanoparticles. Liu R; Zhang HY; Ji ZX; Rallo R; Xia T; Chang CH; Nel A; Cohen Y Nanoscale; 2013 Jun; 5(12):5644-53. PubMed ID: 23689214 [TBL] [Abstract][Full Text] [Related]
40. Estimation of gas-phase reaction rate constants of alkylnaphthalenes with chlorine, hydroxyl and nitrate radicals. Long X; Niu J Chemosphere; 2007 May; 67(10):2028-34. PubMed ID: 17239921 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]