BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24362510)

  • 1. Gain of function mutation in tobacco MADS box promoter switch on the expression of flowering class B genes converting sepals to petals.
    Mahajan M; Yadav SK
    Mol Biol Rep; 2014 Feb; 41(2):705-12. PubMed ID: 24362510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological alterations by ectopic expression of the rice OsMADS4 gene in tobacco plants.
    Kang HG; An G
    Plant Cell Rep; 2005 May; 24(2):120-6. PubMed ID: 15703945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of petaloid sepals independent of shifts in B-class MADS box gene expression.
    Landis JB; Barnett LL; Hileman LC
    Dev Genes Evol; 2012 Mar; 222(1):19-28. PubMed ID: 22198545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Petaloidy and petal identity MADS-box genes in the balsaminoid genera Impatiens and Marcgravia.
    Geuten K; Becker A; Kaufmann K; Caris P; Janssens S; Viaene T; Theissen G; Smets E
    Plant J; 2006 Aug; 47(4):501-18. PubMed ID: 16856983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of the C-class MADS-box gene involved in the formation of double flowers in Japanese gentian.
    Nakatsuka T; Saito M; Yamada E; Fujita K; Yamagishi N; Yoshikawa N; Nishihara M
    BMC Plant Biol; 2015 Jul; 15():182. PubMed ID: 26183329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis.
    Tzeng TY; Chen HY; Yang CH
    Plant Physiol; 2002 Dec; 130(4):1827-36. PubMed ID: 12481066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional and evolutionary analysis of the AP1/SEP/AGL6 superclade of MADS-box genes in the basal eudicot Epimedium sagittatum.
    Sun W; Huang W; Li Z; Song C; Liu D; Liu Y; Hayward A; Liu Y; Huang H; Wang Y
    Ann Bot; 2014 Mar; 113(4):653-68. PubMed ID: 24532606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'Living stones' reveal alternative petal identity programs within the core eudicots.
    Brockington SF; Rudall PJ; Frohlich MW; Oppenheimer DG; Soltis PS; Soltis DE
    Plant J; 2012 Jan; 69(2):193-203. PubMed ID: 21951031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the floral MADS-box genes from monocotyledonous Trilliaceae species indicates the involvement of SEPALLATA3-like genes in sepal-petal differentiation.
    Kubota S; Kanno A
    Plant Sci; 2015 Dec; 241():266-76. PubMed ID: 26706077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of U1 small nuclear ribonucleoprotein 70K antisense transcript using APETALA3 promoter suppresses the development of sepals and petals.
    Golovkin M; Reddy AS
    Plant Physiol; 2003 Aug; 132(4):1884-91. PubMed ID: 12913145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The seirena B class floral homeotic mutant of California Poppy (Eschscholzia californica) reveals a function of the enigmatic PI motif in the formation of specific multimeric MADS domain protein complexes.
    Lange M; Orashakova S; Lange S; Melzer R; Theißen G; Smyth DR; Becker A
    Plant Cell; 2013 Feb; 25(2):438-53. PubMed ID: 23444328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ectopic expression of a single homeotic gene, the Petunia gene green petal, is sufficient to convert sepals to petaloid organs.
    Halfter U; Ali N; Stockhaus J; Ren L; Chua NH
    EMBO J; 1994 Mar; 13(6):1443-9. PubMed ID: 7907980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, Expression, and Tobacco Overexpression Analyses of a
    Zeng Z; Chen S; Xu M; Wang M; Chen Z; Wang L; Pang J
    Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828354
    [No Abstract]   [Full Text] [Related]  

  • 14. Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation.
    Chen MK; Lin IC; Yang CH
    Plant Cell Physiol; 2008 May; 49(5):704-17. PubMed ID: 18367516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental genetics of the perianthless flowers and bracts of a paleoherb species, Saururus chinensis.
    Zhao YH; Larson-Rabin Z; Wang GY; Möller M; Li CY; Zhang JP; Li HT; Li DZ
    PLoS One; 2013; 8(1):e53019. PubMed ID: 23382831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the petaloid bracts of a paleoherb species, Saururus chinensis.
    Zhao YH; Zhang XM; Li DZ
    PLoS One; 2021; 16(9):e0255679. PubMed ID: 34473732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ectopic Expression of a
    Liu Z; Fei Y; Zhang K; Fang Z
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31022949
    [No Abstract]   [Full Text] [Related]  

  • 18. A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility.
    Huang F; Xu G; Chi Y; Liu H; Xue Q; Zhao T; Gai J; Yu D
    BMC Plant Biol; 2014 Apr; 14():89. PubMed ID: 24693922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid.
    Chang YY; Kao NH; Li JY; Hsu WH; Liang YL; Wu JW; Yang CH
    Plant Physiol; 2010 Feb; 152(2):837-53. PubMed ID: 20018605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The study of the E-class SEPALLATA3-like MADS-box genes in wild-type and mutant flowers of cultivated saffron crocus (Crocus sativus L.) and its putative progenitors.
    Tsaftaris A; Pasentsis K; Makris A; Darzentas N; Polidoros A; Kalivas A; Argiriou A
    J Plant Physiol; 2011 Sep; 168(14):1675-84. PubMed ID: 21621873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.