These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 24362561)
1. Biofilm cultivation of the oleaginous microalgae Pseudochlorococcum sp. Ji B; Zhang W; Zhang N; Wang J; Lutzu GA; Liu T Bioprocess Biosyst Eng; 2014 Jul; 37(7):1369-75. PubMed ID: 24362561 [TBL] [Abstract][Full Text] [Related]
2. A screening model to predict microalgae biomass growth in photobioreactors and raceway ponds. Huesemann MH; Van Wagenen J; Miller T; Chavis A; Hobbs S; Crowe B Biotechnol Bioeng; 2013 Jun; 110(6):1583-94. PubMed ID: 23280255 [TBL] [Abstract][Full Text] [Related]
3. Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Gross M; Henry W; Michael C; Wen Z Bioresour Technol; 2013 Dec; 150():195-201. PubMed ID: 24161650 [TBL] [Abstract][Full Text] [Related]
4. Yearlong evaluation of performance and durability of a pilot-scale Revolving Algal Biofilm (RAB) cultivation system. Gross M; Wen Z Bioresour Technol; 2014 Nov; 171():50-8. PubMed ID: 25189508 [TBL] [Abstract][Full Text] [Related]
5. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor. Blanken W; Janssen M; Cuaresma M; Libor Z; Bhaiji T; Wijffels RH Biotechnol Bioeng; 2014 Dec; 111(12):2436-45. PubMed ID: 24895246 [TBL] [Abstract][Full Text] [Related]
6. Analysis and design of photobioreactors for microalgae production II: experimental validation of a radiation field simulator based on a Monte Carlo algorithm. Heinrich JM; Niizawa I; Botta FA; Trombert AR; Irazoqui HA Photochem Photobiol; 2012; 88(4):952-60. PubMed ID: 22452542 [TBL] [Abstract][Full Text] [Related]
7. Effect of Tris-(hydroxymethyl)-amino methane on microalgae biomass growth in a photobioreactor. Nguyen TT; Bui XT; Pham MD; Guo W; Ngo HH Bioresour Technol; 2016 May; 208():1-6. PubMed ID: 26913641 [TBL] [Abstract][Full Text] [Related]
8. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Chiu SY; Kao CY; Huang TT; Lin CJ; Ong SC; Chen CD; Chang JS; Lin CS Bioresour Technol; 2011 Oct; 102(19):9135-42. PubMed ID: 21802285 [TBL] [Abstract][Full Text] [Related]
9. A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation. Liao Q; Li L; Chen R; Zhu X Bioresour Technol; 2014 Jun; 161():186-91. PubMed ID: 24704839 [TBL] [Abstract][Full Text] [Related]
10. Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors. Hindersin S; Leupold M; Kerner M; Hanelt D Bioprocess Biosyst Eng; 2013 Mar; 36(3):345-55. PubMed ID: 22847362 [TBL] [Abstract][Full Text] [Related]
11. Influence of Water Depth on Microalgal Production, Biomass Harvest, and Energy Consumption in High Rate Algal Pond Using Municipal Wastewater. Kim BH; Choi JE; Cho K; Kang Z; Ramanan R; Moon DG; Kim HS J Microbiol Biotechnol; 2018 Apr; 28(4):630-637. PubMed ID: 29429325 [TBL] [Abstract][Full Text] [Related]
12. Comparison of Chlorella vulgaris biomass productivity cultivated in biofilm and suspension from the aspect of light transmission and microalgae affinity to carbon dioxide. Huang Y; Xiong W; Liao Q; Fu Q; Xia A; Zhu X; Sun Y Bioresour Technol; 2016 Dec; 222():367-373. PubMed ID: 27741475 [TBL] [Abstract][Full Text] [Related]
13. Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient. Huang J; Li Y; Wan M; Yan Y; Feng F; Qu X; Wang J; Shen G; Li W; Fan J; Wang W Bioresour Technol; 2014 May; 159():8-16. PubMed ID: 24632435 [TBL] [Abstract][Full Text] [Related]
14. [A novel flat plate photobioreactor for microalgae cultivation]. Zhang Q; Yan C; Xue S; Wu X; Wang Z; Cong W Sheng Wu Gong Cheng Xue Bao; 2015 Feb; 31(2):251-7. PubMed ID: 26062346 [TBL] [Abstract][Full Text] [Related]
15. A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Gao F; Yang ZH; Li C; Zeng GM; Ma DH; Zhou L Bioresour Technol; 2015 Mar; 179():8-12. PubMed ID: 25514396 [TBL] [Abstract][Full Text] [Related]
16. Installation of flow deflectors and wing baffles to reduce dead zone and enhance flashing light effect in an open raceway pond. Zhang Q; Xue S; Yan C; Wu X; Wen S; Cong W Bioresour Technol; 2015 Dec; 198():150-6. PubMed ID: 26386417 [TBL] [Abstract][Full Text] [Related]
17. Analysis and design of photobioreactors for microalgae production I: method and parameters for radiation field simulation. Heinrich JM; Niizawa I; Botta FA; Trombert AR; Irazoqui HA Photochem Photobiol; 2012; 88(4):938-51. PubMed ID: 22417291 [TBL] [Abstract][Full Text] [Related]
18. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Min M; Wang L; Li Y; Mohr MJ; Hu B; Zhou W; Chen P; Ruan R Appl Biochem Biotechnol; 2011 Sep; 165(1):123-37. PubMed ID: 21494756 [TBL] [Abstract][Full Text] [Related]
19. Estimation of carbon dioxide sequestration potential of microalgae grown in a batch photobioreactor. Kargupta W; Ganesh A; Mukherji S Bioresour Technol; 2015 Mar; 180():370-5. PubMed ID: 25616748 [TBL] [Abstract][Full Text] [Related]
20. A novel approach using low-cost Citrus limetta waste for mixotrophic cultivation of oleaginous microalgae to augment automotive quality biodiesel production. Katiyar R; Gurjar BR; Kumar A; Bharti RK; Biswas S; Pruthi V Environ Sci Pollut Res Int; 2019 Jun; 26(16):16115-16124. PubMed ID: 30972671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]