These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 24362703)

  • 41. Binding of 5'-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism.
    Hänzelmann P; Schindelin H
    Proc Natl Acad Sci U S A; 2006 May; 103(18):6829-34. PubMed ID: 16632608
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Radical mechanisms in adenosylmethionine- and adenosylcobalamin-dependent enzymatic reactions.
    Frey PA; Reed GH
    Arch Biochem Biophys; 2000 Oct; 382(1):6-14. PubMed ID: 11051091
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanism of Reduction of an Aminyl Radical Intermediate in the Radical SAM GTP 3',8-Cyclase MoaA.
    Pang H; Walker LM; Silakov A; Zhang P; Yang W; Elliott SJ; Yokoyama K
    J Am Chem Soc; 2021 Sep; 143(34):13835-13844. PubMed ID: 34423974
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The thiamine biosynthetic enzyme ThiC catalyzes multiple turnovers and is inhibited by S-adenosylmethionine (AdoMet) metabolites.
    Palmer LD; Downs DM
    J Biol Chem; 2013 Oct; 288(42):30693-30699. PubMed ID: 24014032
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Radical AdoMet enzymes in complex metal cluster biosynthesis.
    Duffus BR; Hamilton TL; Shepard EM; Boyd ES; Peters JW; Broderick JB
    Biochim Biophys Acta; 2012 Nov; 1824(11):1254-63. PubMed ID: 22269887
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reaction of AdoMet with ThiC generates a backbone free radical.
    Martinez-Gomez NC; Poyner RR; Mansoorabadi SO; Reed GH; Downs DM
    Biochemistry; 2009 Jan; 48(2):217-9. PubMed ID: 19113839
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protein residues that control the reaction trajectory in S-adenosylmethionine radical enzymes: mutagenesis of asparagine 153 and aspartate 155 in Escherichia coli biotin synthase.
    Farrar CE; Jarrett JT
    Biochemistry; 2009 Mar; 48(11):2448-58. PubMed ID: 19199517
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrochemical Resolution of the [4Fe-4S] Centers of the AdoMet Radical Enzyme BtrN: Evidence of Proton Coupling and an Unusual, Low-Potential Auxiliary Cluster.
    Maiocco SJ; Grove TL; Booker SJ; Elliott SJ
    J Am Chem Soc; 2015 Jul; 137(27):8664-7. PubMed ID: 26088836
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anaerobic sulfatase-maturating enzyme--a mechanistic link with glycyl radical-activating enzymes?
    Benjdia A; Subramanian S; Leprince J; Vaudry H; Johnson MK; Berteau O
    FEBS J; 2010 Apr; 277(8):1906-20. PubMed ID: 20218986
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Paramagnetic intermediates generated by radical S-adenosylmethionine (SAM) enzymes.
    Stich TA; Myers WK; Britt RD
    Acc Chem Res; 2014 Aug; 47(8):2235-43. PubMed ID: 24991701
    [TBL] [Abstract][Full Text] [Related]  

  • 51.
    Impano S; Yang H; Shepard EM; Swimley R; Pagnier A; Broderick WE; Hoffman BM; Broderick JB
    Angew Chem Int Ed Engl; 2021 Feb; 60(9):4666-4672. PubMed ID: 33935588
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An anchoring role for FeS clusters: chelation of the amino acid moiety of S-adenosylmethionine to the unique iron site of the [4Fe-4S] cluster of pyruvate formate-lyase activating enzyme.
    Walsby CJ; Ortillo D; Broderick WE; Broderick JB; Hoffman BM
    J Am Chem Soc; 2002 Sep; 124(38):11270-1. PubMed ID: 12236732
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Radical SAM-dependent adenosylation catalyzed by l-tyrosine lyases.
    Wu Y; Wu R; Mandalapu D; Ji X; Chen T; Ding W; Zhang Q
    Org Biomol Chem; 2019 Feb; 17(7):1809-1812. PubMed ID: 30520933
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biochemical and Structural Characterization of a Schiff Base in the Radical-Mediated Biosynthesis of 4-Demethylwyosine by TYW1.
    Grell TAJ; Young AP; Drennan CL; Bandarian V
    J Am Chem Soc; 2018 Jun; 140(22):6842-6852. PubMed ID: 29792696
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coordination and mechanism of reversible cleavage of S-adenosylmethionine by the [4Fe-4S] center in lysine 2,3-aminomutase.
    Chen D; Walsby C; Hoffman BM; Frey PA
    J Am Chem Soc; 2003 Oct; 125(39):11788-9. PubMed ID: 14505379
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cofactor dependence of reduction potentials for [4Fe-4S]2+/1+ in lysine 2,3-aminomutase.
    Hinckley GT; Frey PA
    Biochemistry; 2006 Mar; 45(10):3219-25. PubMed ID: 16519516
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Radical SAM activation of the B12-independent glycerol dehydratase results in formation of 5'-deoxy-5'-(methylthio)adenosine and not 5'-deoxyadenosine.
    Demick JM; Lanzilotta WN
    Biochemistry; 2011 Feb; 50(4):440-2. PubMed ID: 21182298
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural basis for methyl transfer by a radical SAM enzyme.
    Boal AK; Grove TL; McLaughlin MI; Yennawar NH; Booker SJ; Rosenzweig AC
    Science; 2011 May; 332(6033):1089-92. PubMed ID: 21527678
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct H atom abstraction from spore photoproduct C-6 initiates DNA repair in the reaction catalyzed by spore photoproduct lyase: evidence for a reversibly generated adenosyl radical intermediate.
    Cheek J; Broderick JB
    J Am Chem Soc; 2002 Mar; 124(12):2860-1. PubMed ID: 11902862
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Radical-mediated enzymatic methylation: a tale of two SAMS.
    Zhang Q; van der Donk WA; Liu W
    Acc Chem Res; 2012 Apr; 45(4):555-64. PubMed ID: 22097883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.