These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24363031)

  • 1. A probabilistic framework for a physiological representation of dynamically evolving sleep state.
    Dadok VM; Kirsch HE; Sleigh JW; Lopour BA; Szeri AJ
    J Comput Neurosci; 2014 Aug; 37(1):105-24. PubMed ID: 24363031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A continuous mapping of sleep states through association of EEG with a mesoscale cortical model.
    Lopour BA; Tasoglu S; Kirsch HE; Sleigh JW; Szeri AJ
    J Comput Neurosci; 2011 Apr; 30(2):471-87. PubMed ID: 20809258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A probabilistic method for determining cortical dynamics during seizures.
    Dadok VM; Kirsch HE; Sleigh JW; Lopour BA; Szeri AJ
    J Comput Neurosci; 2015 Jun; 38(3):559-75. PubMed ID: 25851500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical development, electroencephalogram rhythms, and the sleep/wake cycle.
    Cirelli C; Tononi G
    Biol Psychiatry; 2015 Jun; 77(12):1071-8. PubMed ID: 25680672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-linear analysis of the sleep EEG.
    Kobayashi T; Misaki K; Nakagawa H; Madokoro S; Ihara H; Tsuda K; Umezawa Y; Murayama J; Isaki K
    Psychiatry Clin Neurosci; 1999 Apr; 53(2):159-61. PubMed ID: 10459677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Eye Movement Sleep Sawtooth Waves Are Associated with Widespread Cortical Activations.
    Frauscher B; von Ellenrieder N; Dolezalova I; Bouhadoun S; Gotman J; Peter-Derex L
    J Neurosci; 2020 Nov; 40(46):8900-8912. PubMed ID: 33055279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of delta (0-3 Hz) EEG and eye movement density to a night with 100 minutes of sleep.
    Feinberg I; Baker T; Leder R; March JD
    Sleep; 1988 Oct; 11(5):473-87. PubMed ID: 3227227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of sensory patterns during sleep highlights differential dynamics of REM and non-REM sleep stages.
    Ramot M; Fisch L; Davidesco I; Harel M; Kipervasser S; Andelman F; Neufeld MY; Kramer U; Fried I; Malach R
    J Neurosci; 2013 Sep; 33(37):14715-28. PubMed ID: 24027272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsupervised Estimation of Mouse Sleep Scores and Dynamics Using a Graphical Model of Electrophysiological Measurements.
    Yaghouby F; O'Hara BF; Sunderam S
    Int J Neural Syst; 2016 Jun; 26(4):1650017. PubMed ID: 27121993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans.
    Riedner BA; Vyazovskiy VV; Huber R; Massimini M; Esser S; Murphy M; Tononi G
    Sleep; 2007 Dec; 30(12):1643-57. PubMed ID: 18246974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local Differences in Computational Sleep Depth Parameters in Healthy School-aged Children.
    Himanen SL; Huupponen E; Jussila M; Lapinlampi AM; Saarenpää-Heikkilä O
    Clin EEG Neurosci; 2017 Nov; 48(6):393-402. PubMed ID: 28679286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of cortical slow waves in the sleep EEG using a modified matching pursuit method with a restricted dictionary.
    Picot A; Whitmore H; Chapotot F
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2808-17. PubMed ID: 22868527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex propagation patterns characterize human cortical activity during slow-wave sleep.
    Hangya B; Tihanyi BT; Entz L; Fabó D; Erőss L; Wittner L; Jakus R; Varga V; Freund TF; Ulbert I
    J Neurosci; 2011 Jun; 31(24):8770-9. PubMed ID: 21677161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lempel-Ziv complexity of cortical activity during sleep and waking in rats.
    Abásolo D; Simons S; Morgado da Silva R; Tononi G; Vyazovskiy VV
    J Neurophysiol; 2015 Apr; 113(7):2742-52. PubMed ID: 25717159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of features from sleep EEG for Bayesian assessment of brain development.
    Schetinin V; Jakaite L
    PLoS One; 2017; 12(3):e0174027. PubMed ID: 28323852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human sleep EEG analysis using the correlation dimension.
    Kobayashi T; Madokoro S; Wada Y; Misaki K; Nakagawa H
    Clin Electroencephalogr; 2001 Jul; 32(3):112-8. PubMed ID: 11512374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in EEG multiscale entropy and power-law frequency scaling during the human sleep cycle.
    Miskovic V; MacDonald KJ; Rhodes LJ; Cote KA
    Hum Brain Mapp; 2019 Feb; 40(2):538-551. PubMed ID: 30259594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian regulation of slow waves in human sleep: Topographical aspects.
    Lazar AS; Lazar ZI; Dijk DJ
    Neuroimage; 2015 Aug; 116():123-34. PubMed ID: 25979664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sleep in the rock hyrax, Procavia capensis.
    Gravett N; Bhagwandin A; Lyamin OI; Siegel JM; Manger PR
    Brain Behav Evol; 2012; 79(3):155-69. PubMed ID: 22301688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling changes in cortical and pontine sigma and theta frequency oscillations following monoaminergic lesions in rat.
    Kesic S; Kalauzi A; Radulovacki M; Carley DW; Saponjic J
    Sleep Breath; 2011 Jan; 15(1):35-47. PubMed ID: 20135235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.