These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
920 related articles for article (PubMed ID: 24363178)
1. Regulation of pyruvate metabolism and human disease. Gray LR; Tompkins SC; Taylor EB Cell Mol Life Sci; 2014 Jul; 71(14):2577-604. PubMed ID: 24363178 [TBL] [Abstract][Full Text] [Related]
2. The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier. Zangari J; Petrelli F; Maillot B; Martinou JC Biomolecules; 2020 Jul; 10(7):. PubMed ID: 32708919 [TBL] [Abstract][Full Text] [Related]
3. Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional (13)C labeling of common amino acids. Maaheimo H; Fiaux J; Cakar ZP; Bailey JE; Sauer U; Szyperski T Eur J Biochem; 2001 Apr; 268(8):2464-79. PubMed ID: 11298766 [TBL] [Abstract][Full Text] [Related]
4. Mitochondrial metabolism: a common link between neuroinflammation and neurodegeneration. Garabadu D; Agrawal N; Sharma A; Sharma S Behav Pharmacol; 2019 Dec; 30(8):642-652. PubMed ID: 31625975 [TBL] [Abstract][Full Text] [Related]
5. The mitochondrial pyruvate carrier at the crossroads of intermediary metabolism. Yiew NKH; Finck BN Am J Physiol Endocrinol Metab; 2022 Jul; 323(1):E33-E52. PubMed ID: 35635330 [TBL] [Abstract][Full Text] [Related]
12. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Lu J; Tan M; Cai Q Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809 [TBL] [Abstract][Full Text] [Related]
13. Mitochondrial Pyruvate Carrier Function in Health and Disease across the Lifespan. Buchanan JL; Taylor EB Biomolecules; 2020 Aug; 10(8):. PubMed ID: 32784379 [TBL] [Abstract][Full Text] [Related]
14. Synergistic Rewiring of Carbon Metabolism and Redox Metabolism in Cytoplasm and Mitochondria of Aspergillus oryzae for Increased l-Malate Production. Liu J; Li J; Liu Y; Shin HD; Ledesma-Amaro R; Du G; Chen J; Liu L ACS Synth Biol; 2018 Sep; 7(9):2139-2147. PubMed ID: 30092627 [TBL] [Abstract][Full Text] [Related]
15. Identification of active elementary flux modes in mitochondria using selectively permeabilized CHO cells. Nicolae A; Wahrheit J; Nonnenmacher Y; Weyler C; Heinzle E Metab Eng; 2015 Nov; 32():95-105. PubMed ID: 26417715 [TBL] [Abstract][Full Text] [Related]
16. Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion. MacDonald MJ J Biol Chem; 1995 Aug; 270(34):20051-8. PubMed ID: 7650022 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrial pyruvate transport: a historical perspective and future research directions. McCommis KS; Finck BN Biochem J; 2015 Mar; 466(3):443-54. PubMed ID: 25748677 [TBL] [Abstract][Full Text] [Related]
18. Regulation of substrate utilization by the mitochondrial pyruvate carrier. Vacanti NM; Divakaruni AS; Green CR; Parker SJ; Henry RR; Ciaraldi TP; Murphy AN; Metallo CM Mol Cell; 2014 Nov; 56(3):425-435. PubMed ID: 25458843 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering of CHO cells for the development of a robust protein production platform. Gupta SK; Srivastava SK; Sharma A; Nalage VHH; Salvi D; Kushwaha H; Chitnis NB; Shukla P PLoS One; 2017; 12(8):e0181455. PubMed ID: 28763459 [TBL] [Abstract][Full Text] [Related]
20. Metabolic modelling identifies mitochondrial Pi uptake and pyruvate efflux as key aspects of daytime metabolism and proton homeostasis in crassulacean acid metabolism leaves. Daems S; Shameer S; Ceusters N; Sweetlove L; Ceusters J New Phytol; 2024 Oct; 244(1):159-175. PubMed ID: 39113419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]