BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24363211)

  • 21. Mouse strain differences in kainic acid sensitivity, seizure behavior, mortality, and hippocampal pathology.
    McKhann GM; Wenzel HJ; Robbins CA; Sosunov AA; Schwartzkroin PA
    Neuroscience; 2003; 122(2):551-61. PubMed ID: 14614919
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glial activation links early-life seizures and long-term neurologic dysfunction: evidence using a small molecule inhibitor of proinflammatory cytokine upregulation.
    Somera-Molina KC; Robin B; Somera CA; Anderson C; Stine C; Koh S; Behanna HA; Van Eldik LJ; Watterson DM; Wainwright MS
    Epilepsia; 2007 Sep; 48(9):1785-1800. PubMed ID: 17521344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity.
    Meucci O; Fatatis A; Simen AA; Bushell TJ; Gray PW; Miller RJ
    Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14500-5. PubMed ID: 9826729
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential regulation of primary protein kinase C substrate (MARCKS, MLP, GAP-43, RC3) mRNAs in the hippocampus during kainic acid-induced seizures and synaptic reorganization.
    McNamara RK; Lenox RH
    J Neurosci Res; 2000 Nov; 62(3):416-26. PubMed ID: 11054811
    [TBL] [Abstract][Full Text] [Related]  

  • 25. miR-128 regulates epilepsy sensitivity in mice by suppressing SNAP-25 and SYT1 expression in the hippocampus.
    Wang P; Zhang Y; Wang Z; Yang A; Li Y; Zhang Q
    Biochem Biophys Res Commun; 2021 Mar; 545():195-202. PubMed ID: 33571908
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kainic acid induces leukemia inhibitory factor mRNA expression in the rat brain: differences in the time course of mRNA expression between the dentate gyrus and hippocampal CA1/CA3 subfields.
    Minami M; Maekawa K; Yamakuni H; Katayama T; Nakamura J; Satoh M
    Brain Res Mol Brain Res; 2002 Oct; 107(1):39-46. PubMed ID: 12414122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dexmedetomidine protects neurons from kainic acid-induced excitotoxicity by activating BDNF signaling.
    Chiu KM; Lin TY; Lee MY; Lu CW; Wang MJ; Wang SJ
    Neurochem Int; 2019 Oct; 129():104493. PubMed ID: 31220473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interleukin-21 expression in hippocampal astrocytes is enhanced following kainic acid-induced seizures.
    Xiong XY; Wang TG; Yang MH; Meng ZY; Yang QW; Wang FX
    Neurol Res; 2016 Feb; 38(2):151-7. PubMed ID: 27118610
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nervous system-specific expression of a novel serine protease: regulation in the adult rat spinal cord by excitotoxic injury.
    Scarisbrick IA; Towner MD; Isackson PJ
    J Neurosci; 1997 Nov; 17(21):8156-68. PubMed ID: 9334391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular basis of age-associated cytokine dysregulation in LPS-stimulated macrophages.
    Chelvarajan RL; Liu Y; Popa D; Getchell ML; Getchell TV; Stromberg AJ; Bondada S
    J Leukoc Biol; 2006 Jun; 79(6):1314-27. PubMed ID: 16603589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The chemokine receptor CCR5 is not a necessary inflammatory mediator in kainic acid-induced hippocampal injury: evidence for a compensatory effect by increased CCR2 and CCR3.
    Chen Z; Yu S; Bakhiet M; Winblad B; Zhu J
    J Neurochem; 2003 Jul; 86(1):61-8. PubMed ID: 12807425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TNF-alpha receptor 1 deficiency enhances kainic acid-induced hippocampal injury in mice.
    Lu MO; Zhang XM; Mix E; Quezada HC; Jin T; Zhu J; Adem A
    J Neurosci Res; 2008 May; 86(7):1608-14. PubMed ID: 18189316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased transcription of glutamate-aspartate transporter (GLAST/GluT-1) mRNA following kainic acid-induced limbic seizure.
    Nonaka M; Kohmura E; Yamashita T; Shimada S; Tanaka K; Yoshimine T; Tohyama M; Hayakawa T
    Brain Res Mol Brain Res; 1998 Mar; 55(1):54-60. PubMed ID: 9645960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overexpression of apolipoprotein E4 increases kainic-acid-induced hippocampal neurodegeneration.
    Zhang XM; Mao XJ; Zhang HL; Zheng XY; Pham T; Adem A; Winblad B; Mix E; Zhu J
    Exp Neurol; 2012 Jan; 233(1):323-32. PubMed ID: 22079154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function.
    Schaerli P; Willimann K; Lang AB; Lipp M; Loetscher P; Moser B
    J Exp Med; 2000 Dec; 192(11):1553-62. PubMed ID: 11104798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sinapic acid attenuates kainic acid-induced hippocampal neuronal damage in mice.
    Kim DH; Yoon BH; Jung WY; Kim JM; Park SJ; Park DH; Huh Y; Park C; Cheong JH; Lee KT; Shin CY; Ryu JH
    Neuropharmacology; 2010; 59(1-2):20-30. PubMed ID: 20363233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in the GABA-ergic system induced by trimethyltin application in the rat.
    Nishimura T; Schwarzer C; Furtinger S; Imai H; Kato N; Sperk G
    Brain Res Mol Brain Res; 2001 Dec; 97(1):1-6. PubMed ID: 11744156
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development.
    Rizzi M; Perego C; Aliprandi M; Richichi C; Ravizza T; Colella D; Velískŏvá J; Moshé SL; De Simoni MG; Vezzani A
    Neurobiol Dis; 2003 Dec; 14(3):494-503. PubMed ID: 14678765
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of IL-1β Signaling Normalizes NMDA-Dependent Neurotransmission and Reduces Seizure Susceptibility in a Mouse Model of Creutzfeldt-Jakob Disease.
    Bertani I; Iori V; Trusel M; Maroso M; Foray C; Mantovani S; Tonini R; Vezzani A; Chiesa R
    J Neurosci; 2017 Oct; 37(43):10278-10289. PubMed ID: 28924012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repeated citalopram administration counteracts kainic acid-induced spreading of PSA-NCAM-immunoreactive cells and loss of reelin in the adult mouse hippocampus.
    Jaako K; Aonurm-Helm A; Kalda A; Anier K; Zharkovsky T; Shastin D; Zharkovsky A
    Eur J Pharmacol; 2011 Sep; 666(1-3):61-71. PubMed ID: 21596030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.