These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
587 related articles for article (PubMed ID: 24363237)
1. Use of spectroscopic and imaging techniques to evaluate pretreated sugarcane bagasse as a substrate for cellulase production under solid-state fermentation. Rodríguez-Zúñiga UF; Bertucci Neto V; Couri S; Crestana S; Farinas CS Appl Biochem Biotechnol; 2014 Mar; 172(5):2348-62. PubMed ID: 24363237 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous production of cellulase and reducing sugar through modification of compositional and structural characteristic of sugarcane bagasse. Yoon LW; Ngoh GC; Chua AS Enzyme Microb Technol; 2013 Sep; 53(4):250-6. PubMed ID: 23931690 [TBL] [Abstract][Full Text] [Related]
3. Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies. Li J; Zhou P; Liu H; Xiong C; Lin J; Xiao W; Gong Y; Liu Z Bioresour Technol; 2014 Mar; 155():258-65. PubMed ID: 24457310 [TBL] [Abstract][Full Text] [Related]
4. Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate. Tai WY; Tan JS; Lim V; Lee CK Biotechnol Prog; 2019 May; 35(3):e2781. PubMed ID: 30701709 [TBL] [Abstract][Full Text] [Related]
5. Formic acid as a potential pretreatment agent for the conversion of sugarcane bagasse to bioethanol. Sindhu R; Binod P; Satyanagalakshmi K; Janu KU; Sajna KV; Kurien N; Sukumaran RK; Pandey A Appl Biochem Biotechnol; 2010 Dec; 162(8):2313-23. PubMed ID: 20526821 [TBL] [Abstract][Full Text] [Related]
6. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis. Florencio C; Cunha FM; Badino AC; Farinas CS; Ximenes E; Ladisch MR Enzyme Microb Technol; 2016 Aug; 90():53-60. PubMed ID: 27241292 [TBL] [Abstract][Full Text] [Related]
7. Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation. Waghmare PR; Kadam AA; Saratale GD; Govindwar SP Bioresour Technol; 2014 Sep; 168():136-41. PubMed ID: 24656486 [TBL] [Abstract][Full Text] [Related]
8. Enhanced enzymatic cellulose hydrolysis by subcritical carbon dioxide pretreatment of sugarcane bagasse. Zhang H; Wu S Bioresour Technol; 2014 Apr; 158():161-5. PubMed ID: 24603488 [TBL] [Abstract][Full Text] [Related]
9. Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis. Gao Y; Xu J; Zhang Y; Yu Q; Yuan Z; Liu Y Bioresour Technol; 2013 Sep; 144():396-400. PubMed ID: 23891836 [TBL] [Abstract][Full Text] [Related]
10. Comparative study of different alcoholate pretreatments for enhanced enzymatic hydrolysis of sugarcane bagasse. Huang Q; Yan Q; Fu J; Lv X; Xiong C; Lin J; Liu Z Bioresour Technol; 2016 Jul; 211():464-71. PubMed ID: 27035479 [TBL] [Abstract][Full Text] [Related]
11. Pretreatment of sugarcane bagasse with NH4OH-H2O2 and ionic liquid for efficient hydrolysis and bioethanol production. Zhu Z; Zhu M; Wu Z Bioresour Technol; 2012 Sep; 119():199-207. PubMed ID: 22728201 [TBL] [Abstract][Full Text] [Related]
12. Effect of pretreatment on saccharification of sugarcane bagasse by complex and simple enzyme mixtures. Harrison MD; Zhang Z; Shand K; O'Hara IM; Doherty WO; Dale JL Bioresour Technol; 2013 Nov; 148():105-13. PubMed ID: 24045198 [TBL] [Abstract][Full Text] [Related]
13. Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. Maeda RN; Barcelos CA; Santa Anna LM; Pereira N J Biotechnol; 2013 Jan; 163(1):38-44. PubMed ID: 23123260 [TBL] [Abstract][Full Text] [Related]
14. Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. Cunha FM; Esperança MN; Zangirolami TC; Badino AC; Farinas CS Bioresour Technol; 2012 May; 112():270-4. PubMed ID: 22409979 [TBL] [Abstract][Full Text] [Related]
15. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110 [TBL] [Abstract][Full Text] [Related]
16. Relationship between physicochemical properties and enzymatic hydrolysis of sugarcane bagasse varieties for bioethanol production. Brienzo M; Tyhoda L; Benjamin Y; Görgens J N Biotechnol; 2015 Mar; 32(2):253-62. PubMed ID: 25576176 [TBL] [Abstract][Full Text] [Related]
17. Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Velmurugan R; Muthukumar K Bioresour Technol; 2011 Jul; 102(14):7119-23. PubMed ID: 21570831 [TBL] [Abstract][Full Text] [Related]
18. Production of bioethanol from fermented sugars of sugarcane bagasse produced by lignocellulolytic enzymes of Exiguobacterium sp. VSG-1. Vijayalaxmi S; Anu Appaiah KA; Jayalakshmi SK; Mulimani VH; Sreeramulu K Appl Biochem Biotechnol; 2013 Sep; 171(1):246-60. PubMed ID: 23832861 [TBL] [Abstract][Full Text] [Related]
19. Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane. Aita GA; Salvi DA; Walker MS Bioresour Technol; 2011 Mar; 102(6):4444-8. PubMed ID: 21247758 [TBL] [Abstract][Full Text] [Related]
20. Optimization of endoglucanase and xylanase activities from Fusarium verticillioides for simultaneous saccharification and fermentation of sugarcane bagasse. de Almeida MN; Guimarães VM; Falkoski DL; Paes GB; Ribeiro JI; Visser EM; Alfenas RF; Pereira OL; de Rezende ST Appl Biochem Biotechnol; 2014 Feb; 172(3):1332-46. PubMed ID: 24170331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]