BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24363344)

  • 1. Transformation of Chlamydia muridarum reveals a role for Pgp5 in suppression of plasmid-dependent gene expression.
    Liu Y; Chen C; Gong S; Hou S; Qi M; Liu Q; Baseman J; Zhong G
    J Bacteriol; 2014 Mar; 196(5):989-98. PubMed ID: 24363344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Chlamydia trachomatis plasmid-encoded open reading frames.
    Gong S; Yang Z; Lei L; Shen L; Zhong G
    J Bacteriol; 2013 Sep; 195(17):3819-26. PubMed ID: 23794619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cryptic plasmid is more important for Chlamydia muridarum to colonize the mouse gastrointestinal tract than to infect the genital tract.
    Shao L; Melero J; Zhang N; Arulanandam B; Baseman J; Liu Q; Zhong G
    PLoS One; 2017; 12(5):e0177691. PubMed ID: 28542376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Genetic Transformation of Chlamydia pneumoniae.
    Shima K; Wanker M; Skilton RJ; Cutcliffe LT; Schnee C; Kohl TA; Niemann S; Geijo J; Klinger M; Timms P; Rattei T; Sachse K; Clarke IN; Rupp J
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30305318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlamydia muridarum induction of glandular duct dilation in mice.
    Sun X; Yang Z; Zhang H; Dai J; Chen J; Tang L; Rippentrop S; Xue M; Zhong G; Wu G
    Infect Immun; 2015 Jun; 83(6):2327-37. PubMed ID: 25824829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress towards an inducible, replication-proficient transposon delivery vector for
    Skilton RJ; O'Neill C; Thomson NR; Lampe DJ; Clarke IN
    Wellcome Open Res; 2021; 6():82. PubMed ID: 33997299
    [No Abstract]   [Full Text] [Related]  

  • 7. Bioluminescence imaging of Chlamydia muridarum ascending infection in mice.
    Campbell J; Huang Y; Liu Y; Schenken R; Arulanandam B; Zhong G
    PLoS One; 2014; 9(7):e101634. PubMed ID: 24983626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrauterine infection with plasmid-free Chlamydia muridarum reveals a critical role of the plasmid in chlamydial ascension and establishes a model for evaluating plasmid-independent pathogenicity.
    Chen J; Yang Z; Sun X; Tang L; Ding Y; Xue M; Zhou Z; Baseman J; Zhong G
    Infect Immun; 2015 Jun; 83(6):2583-92. PubMed ID: 25870225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemokine-mediated immune responses in the female genital tract mucosa.
    Deruaz M; Luster AD
    Immunol Cell Biol; 2015 Apr; 93(4):347-54. PubMed ID: 25776842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A re-evaluation of the role of B cells in protective immunity to Chlamydia infection.
    Li LX; McSorley SJ
    Immunol Lett; 2015 Apr; 164(2):88-93. PubMed ID: 25704502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and targeting of secreted proteins from Chlamydia trachomatis.
    Bauler LD; Hackstadt T
    J Bacteriol; 2014 Apr; 196(7):1325-34. PubMed ID: 24443531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Chlamydia trachomatis Inclusion Membrane Protein CpoS Counteracts STING-Mediated Cellular Surveillance and Suicide Programs.
    Sixt BS; Bastidas RJ; Finethy R; Baxter RM; Carpenter VK; Kroemer G; Coers J; Valdivia RH
    Cell Host Microbe; 2017 Jan; 21(1):113-121. PubMed ID: 28041929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis.
    Stephens RS; Kalman S; Lammel C; Fan J; Marathe R; Aravind L; Mitchell W; Olinger L; Tatusov RL; Zhao Q; Koonin EV; Davis RW
    Science; 1998 Oct; 282(5389):754-9. PubMed ID: 9784136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of chlamydial spreading from the small intestine to the large intestine by IL-22-producing CD4
    Xu Y; Wang Y; Winner H; Yang H; He R; Wang J; Zhong G
    Infect Immun; 2024 Jan; 92(1):e0042123. PubMed ID: 38047677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the alternative sigma factor regulons of
    Hatch ND; Ouellette SP
    mSphere; 2023 Oct; 8(5):e0039123. PubMed ID: 37747235
    [No Abstract]   [Full Text] [Related]  

  • 16. Plasmid-mediated virulence in
    Turman BJ; Darville T; O'Connell CM
    Front Cell Infect Microbiol; 2023; 13():1251135. PubMed ID: 37662000
    [No Abstract]   [Full Text] [Related]  

  • 17. Tryptophan residue of plasmid-encoded Pgp3 is important for
    Huang Y; Wu H; Sun Y; Liu Y
    Front Microbiol; 2023; 14():1216372. PubMed ID: 37497542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in genetic systems in obligate intracellular human-pathogenic bacteria.
    Fisher DJ; Beare PA
    Front Cell Infect Microbiol; 2023; 13():1202245. PubMed ID: 37404720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virulence Protein Pgp3 Is Insufficient To Mediate Plasmid-Dependent Infectivity of Chlamydia trachomatis.
    Turman BJ; Alzhanov D; Nagarajan UM; Darville T; O'Connell CM
    Infect Immun; 2023 Feb; 91(2):e0039222. PubMed ID: 36722979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bacterial effector GarD shields Chlamydia trachomatis inclusions from RNF213-mediated ubiquitylation and destruction.
    Walsh SC; Reitano JR; Dickinson MS; Kutsch M; Hernandez D; Barnes AB; Schott BH; Wang L; Ko DC; Kim SY; Valdivia RH; Bastidas RJ; Coers J
    Cell Host Microbe; 2022 Dec; 30(12):1671-1684.e9. PubMed ID: 36084633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.