These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 24363456)
1. Blood flow in small tubes: quantifying the transition to the non-continuum regime. Lei H; Fedosov DA; Caswell B; Karniadakis GE J Fluid Mech; 2013 May; 722():. PubMed ID: 24363456 [TBL] [Abstract][Full Text] [Related]
2. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells. Pan W; Fedosov DA; Caswell B; Karniadakis GE Microvasc Res; 2011 Sep; 82(2):163-70. PubMed ID: 21640731 [TBL] [Abstract][Full Text] [Related]
3. Effects of aggregation on the flow properties of red blood cell suspensions in narrow vertical tubes. Murata T; Secomb TW Biorheology; 1989; 26(2):247-59. PubMed ID: 2605331 [TBL] [Abstract][Full Text] [Related]
4. Flow behavior of fetal, neonatal and adult RBCs in narrow (3-6 μm) capillaries--Calculation and experimental application. Ruef P; Stadler AA; Poeschl J Clin Hemorheol Microcirc; 2014; 58(2):317-31. PubMed ID: 23313873 [TBL] [Abstract][Full Text] [Related]
5. Linear and nonlinear analyses of pulsatile blood flow in a cylindrical tube. El-Khatib FH; Damiano ER Biorheology; 2003; 40(5):503-22. PubMed ID: 12897417 [TBL] [Abstract][Full Text] [Related]
6. Simulation and modelling of slip flow over surfaces grafted with polymer brushes and glycocalyx fibres. Deng M; Li X; Liang H; Caswell B; Karniadakis GE J Fluid Mech; 2012 Nov; 711():. PubMed ID: 24353347 [TBL] [Abstract][Full Text] [Related]
7. Microvascular blood flow resistance: Role of red blood cell migration and dispersion. Katanov D; Gompper G; Fedosov DA Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979 [TBL] [Abstract][Full Text] [Related]
8. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system. Mehri R; Mavriplis C; Fenech M PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907 [TBL] [Abstract][Full Text] [Related]
9. Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow. Levant M; Steinberg V Phys Rev E; 2016 Dec; 94(6-1):062412. PubMed ID: 28085369 [TBL] [Abstract][Full Text] [Related]
10. Blood cell distribution in small and large vessels: Effects of wall and rotating motion of red blood cells. Tsubota KI; Namioka K J Biomech; 2022 May; 137():111081. PubMed ID: 35472709 [TBL] [Abstract][Full Text] [Related]
11. Quantifying the rheological and hemodynamic characteristics of sickle cell anemia. Lei H; Karniadakis GE Biophys J; 2012 Jan; 102(2):185-94. PubMed ID: 22339854 [TBL] [Abstract][Full Text] [Related]
12. Non-Newtonian flow of blood in arterioles: consequences for wall shear stress measurements. Sriram K; Intaglietta M; Tartakovsky DM Microcirculation; 2014 Oct; 21(7):628-39. PubMed ID: 24703006 [TBL] [Abstract][Full Text] [Related]
13. Peculiar flow patterns of RBCs suspended in viscous fluids and perfused through a narrow tube (25 microm). Sakai H; Sato A; Okuda N; Takeoka S; Maeda N; Tsuchida E Am J Physiol Heart Circ Physiol; 2009 Aug; 297(2):H583-9. PubMed ID: 19502557 [TBL] [Abstract][Full Text] [Related]
14. Implications Enzymatic Degradation of the Endothelial Glycocalyx on the Microvascular Hemodynamics and the Arteriolar Red Cell Free Layer of the Rat Cremaster Muscle. Yalcin O; Jani VP; Johnson PC; Cabrales P Front Physiol; 2018; 9():168. PubMed ID: 29615916 [TBL] [Abstract][Full Text] [Related]
15. Similar but Distinct Roles of Membrane and Interior Fluid Viscosities in Capsule Dynamics in Shear Flows. Li P; Zhang J Cardiovasc Eng Technol; 2021 Apr; 12(2):232-249. PubMed ID: 33483917 [TBL] [Abstract][Full Text] [Related]
16. Two-dimensional strain-hardening membrane model for large deformation behavior of multiple red blood cells in high shear conditions. Ye SS; Ng YC; Tan J; Leo HL; Kim S Theor Biol Med Model; 2014 May; 11():19. PubMed ID: 24885482 [TBL] [Abstract][Full Text] [Related]
17. Perfusion pressure and blood flow determine microvascular apparent viscosity. Yalcin O; Ortiz D; Williams AT; Johnson PC; Cabrales P Exp Physiol; 2015 Aug; 100(8):977-87. PubMed ID: 26011432 [TBL] [Abstract][Full Text] [Related]
18. Shear-induced non-monotonic viscosity dependence for model red blood cell suspensions in microvessels. Liao CT; Chen YL Biomicrofluidics; 2019 Nov; 13(6):064115. PubMed ID: 31768201 [TBL] [Abstract][Full Text] [Related]
19. Shear-induced gradient diffusivity of a red blood cell suspension: effects of cell dynamics from tumbling to tank-treading. Malipeddi AR; Sarkar K Soft Matter; 2021 Sep; 17(37):8523-8535. PubMed ID: 34499062 [TBL] [Abstract][Full Text] [Related]
20. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter. Reinke W; Johnson PC; Gaehtgens P Circ Res; 1986 Aug; 59(2):124-32. PubMed ID: 3742742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]