These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 24364559)
1. Orchestration of enzymatic processing by thiazole/oxazole-modified microcin dehydrogenases. Melby JO; Li X; Mitchell DA Biochemistry; 2014 Jan; 53(2):413-22. PubMed ID: 24364559 [TBL] [Abstract][Full Text] [Related]
2. Identification of an Auxiliary Leader Peptide-Binding Protein Required for Azoline Formation in Ribosomal Natural Products. Dunbar KL; Tietz JI; Cox CL; Burkhart BJ; Mitchell DA J Am Chem Soc; 2015 Jun; 137(24):7672-7. PubMed ID: 26024319 [TBL] [Abstract][Full Text] [Related]
3. Selectivity, directionality, and promiscuity in peptide processing from a Bacillus sp. Al Hakam cyclodehydratase. Melby JO; Dunbar KL; Trinh NQ; Mitchell DA J Am Chem Soc; 2012 Mar; 134(11):5309-16. PubMed ID: 22401305 [TBL] [Abstract][Full Text] [Related]
4. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles. Cox CL; Doroghazi JR; Mitchell DA BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797 [TBL] [Abstract][Full Text] [Related]
5. Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis. Dunbar KL; Chekan JR; Cox CL; Burkhart BJ; Nair SK; Mitchell DA Nat Chem Biol; 2014 Oct; 10(10):823-9. PubMed ID: 25129028 [TBL] [Abstract][Full Text] [Related]
6. Insights into the mechanism of peptide cyclodehydrations achieved through the chemoenzymatic generation of amide derivatives. Dunbar KL; Mitchell DA J Am Chem Soc; 2013 Jun; 135(23):8692-701. PubMed ID: 23721104 [TBL] [Abstract][Full Text] [Related]
8. Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family. Haft DH; Basu MK; Mitchell DA BMC Biol; 2010 May; 8():70. PubMed ID: 20500830 [TBL] [Abstract][Full Text] [Related]
9. ATP/GTP hydrolysis is required for oxazole and thiazole biosynthesis in the peptide antibiotic microcin B17. Milne JC; Eliot AC; Kelleher NL; Walsh CT Biochemistry; 1998 Sep; 37(38):13250-61. PubMed ID: 9748332 [TBL] [Abstract][Full Text] [Related]
10. Micrococcin cysteine-to-thiazole conversion through transient interactions between the scaffolding protein TclI and the modification enzymes TclJ and TclN. Calvopina-Chavez DG; Bursey DM; Tseng Y-J; Patil LM; Bewley KD; Bennallack PR; McPhie JM; Wagstaff KB; Daley A; Miller SM; Moody JD; Price JC; Griffitts JS Appl Environ Microbiol; 2024 Jun; 90(6):e0024424. PubMed ID: 38780510 [TBL] [Abstract][Full Text] [Related]
11. From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Li YM; Milne JC; Madison LL; Kolter R; Walsh CT Science; 1996 Nov; 274(5290):1188-93. PubMed ID: 8895467 [TBL] [Abstract][Full Text] [Related]
12. [Microcins--peptide antibiotics of enterobacteria: genetic control of the synthesis, structure, and mechanism of action]. Khmel' IA Genetika; 1999 Jan; 35(1):5-16. PubMed ID: 10330606 [TBL] [Abstract][Full Text] [Related]
13. YcaO domains use ATP to activate amide backbones during peptide cyclodehydrations. Dunbar KL; Melby JO; Mitchell DA Nat Chem Biol; 2012 Apr; 8(6):569-75. PubMed ID: 22522320 [TBL] [Abstract][Full Text] [Related]
14. Kinetics and regioselectivity of peptide-to-heterocycle conversions by microcin B17 synthetase. Belshaw PJ; Roy RS; Kelleher NL; Walsh CT Chem Biol; 1998 Jul; 5(7):373-84. PubMed ID: 9662507 [TBL] [Abstract][Full Text] [Related]
15. Cofactor requirements and reconstitution of microcin B17 synthetase: a multienzyme complex that catalyzes the formation of oxazoles and thiazoles in the antibiotic microcin B17. Milne JC; Roy RS; Eliot AC; Kelleher NL; Wokhlu A; Nickels B; Walsh CT Biochemistry; 1999 Apr; 38(15):4768-81. PubMed ID: 10200165 [TBL] [Abstract][Full Text] [Related]
16. Structure determination and interception of biosynthetic intermediates for the plantazolicin class of highly discriminating antibiotics. Molohon KJ; Melby JO; Lee J; Evans BS; Dunbar KL; Bumpus SB; Kelleher NL; Mitchell DA ACS Chem Biol; 2011 Dec; 6(12):1307-13. PubMed ID: 21950656 [TBL] [Abstract][Full Text] [Related]
17. [Structure, function, and biosynthesis of thiazoleoxazole modified microcins]. Meterev MV; Giliarov DA Mol Biol (Mosk); 2014; 48(1):36-54. PubMed ID: 25842824 [TBL] [Abstract][Full Text] [Related]
18. Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. Scholz R; Molohon KJ; Nachtigall J; Vater J; Markley AL; Süssmuth RD; Mitchell DA; Borriss R J Bacteriol; 2011 Jan; 193(1):215-24. PubMed ID: 20971906 [TBL] [Abstract][Full Text] [Related]
19. Micrococcin cysteine-to-thiazole conversion through transient interactions between a scaffolding protein and two modification enzymes. Calvopina-Chavez DG; Bursey DM; Tseng YJ; Patil LM; Bewley KD; Bennallack PR; McPhie JM; Wagstaff KB; Daley A; Miller SM; Moody JD; Price JC; Griffitts JS bioRxiv; 2023 Oct; ():. PubMed ID: 37961320 [TBL] [Abstract][Full Text] [Related]
20. Posttranslational heterocyclization of cysteine and serine residues in the antibiotic microcin B17: distributivity and directionality. Kelleher NL; Hendrickson CL; Walsh CT Biochemistry; 1999 Nov; 38(47):15623-30. PubMed ID: 10569947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]