These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 24364726)

  • 1. Mechanisms of molecular permeation through nanoporous graphene membranes.
    Sun C; Boutilier MS; Au H; Poesio P; Bai B; Karnik R; Hadjiconstantinou NG
    Langmuir; 2014 Jan; 30(2):675-82. PubMed ID: 24364726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membranes.
    Wen B; Sun C; Bai B
    Phys Chem Chem Phys; 2015 Sep; 17(36):23619-26. PubMed ID: 26299564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pore density on gas permeation through nanoporous graphene membranes.
    Wang S; Tian Z; Dai S; Jiang DE
    Nanoscale; 2018 Aug; 10(30):14660-14666. PubMed ID: 30033462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable, Temperature-Dependent Gas Mixture Permeation and Separation through Suspended Nanoporous Single-Layer Graphene Membranes.
    Yuan Z; Benck JD; Eatmon Y; Blankschtein D; Strano MS
    Nano Lett; 2018 Aug; 18(8):5057-5069. PubMed ID: 30044919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical Prediction of Gas Permeation through Graphene Nanopores of Varying Sizes: Understanding Transitions across Multiple Transport Regimes.
    Yuan Z; Misra RP; Rajan AG; Strano MS; Blankschtein D
    ACS Nano; 2019 Oct; 13(10):11809-11824. PubMed ID: 31532624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study.
    Jiao S; Xu Z
    ACS Appl Mater Interfaces; 2015 May; 7(17):9052-9. PubMed ID: 25868398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-modified silica colloidal crystals: nanoporous films and membranes with controlled ionic and molecular transport.
    Zharov I; Khabibullin A
    Acc Chem Res; 2014 Feb; 47(2):440-9. PubMed ID: 24397245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene.
    Villalobos LF; Babu DJ; Hsu KJ; Van Goethem C; Agrawal KV
    Acc Mater Res; 2022 Oct; 3(10):1073-1087. PubMed ID: 36338295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics.
    Liu H; Dai S; Jiang DE
    Nanoscale; 2013 Oct; 5(20):9984-7. PubMed ID: 23990030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Gas Separation through Graphene Nanopore Ensembles with Realistic Pore Size Distributions.
    Yuan Z; Govind Rajan A; He G; Misra RP; Strano MS; Blankschtein D
    ACS Nano; 2021 Jan; 15(1):1727-1740. PubMed ID: 33439000
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Rodriguez A; Schlichting KP; Poulikakos D; Hu M
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39701-39710. PubMed ID: 34392678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of nanopore density on ethylene/acetylene separation by monolayer graphene.
    Jin B; Zhang X; Li F; Zhang N; Zong Z; Cao S; Li Z; Chen X
    Phys Chem Chem Phys; 2019 Mar; 21(11):6126-6132. PubMed ID: 30816392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation.
    Tao Y; Xue Q; Liu Z; Shan M; Ling C; Wu T; Li X
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8048-58. PubMed ID: 24621326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of gas permeation through single layer graphene membranes.
    Drahushuk LW; Strano MS
    Langmuir; 2012 Dec; 28(48):16671-8. PubMed ID: 23101879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-Coated Halloysite Nanoclay Membrane for the Enhanced Separation of Hydrogen from a Hydrogen-Helium Mixture.
    Dutta S; Das N
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32444-32456. PubMed ID: 35793082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of CH
    Ghiasi M; Zeinali P; Gholami S; Zahedi M
    J Mol Model; 2021 Jun; 27(7):201. PubMed ID: 34121149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.
    Bouša D; Friess K; Pilnáček K; Vopička O; Lanč M; Fónod K; Pumera M; Sedmidubský D; Luxa J; Sofer Z
    Chemistry; 2017 Aug; 23(47):11416-11422. PubMed ID: 28568841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The inhibition effect of water on the purification of natural gas with nanoporous graphene membranes.
    Nieszporek K; Pańczyk T; Nieszporek J
    Beilstein J Nanotechnol; 2018; 9():1906-1916. PubMed ID: 30013884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of chemical functionalization on the CO₂/N₂ separation performance of porous graphene membranes.
    Shan M; Xue Q; Jing N; Ling C; Zhang T; Yan Z; Zheng J
    Nanoscale; 2012 Sep; 4(17):5477-82. PubMed ID: 22850863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.