These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24364808)

  • 1. Docking ligands into flexible and solvated macromolecules. 6. Development and application to the docking of HDACs and other zinc metalloenzymes inhibitors.
    Pottel J; Therrien E; Gleason JL; Moitessier N
    J Chem Inf Model; 2014 Jan; 54(1):254-65. PubMed ID: 24364808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum polarized ligand docking investigation to understand the significance of protonation states in histone deacetylase inhibitors.
    Kalyaanamoorthy S; Chen YP
    J Mol Graph Model; 2013 Jul; 44():44-53. PubMed ID: 23732305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Docking studies of matrix metalloproteinase inhibitors: zinc parameter optimization to improve the binding free energy prediction.
    Hu X; Shelver WH
    J Mol Graph Model; 2003 Nov; 22(2):115-26. PubMed ID: 12932782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How the flexibility of human histone deacetylases influences ligand binding: an overview.
    Deschamps N; Simões-Pires CA; Carrupt PA; Nurisso A
    Drug Discov Today; 2015 Jun; 20(6):736-42. PubMed ID: 25597521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone deacetylases: structural determinants of inhibitor selectivity.
    Micelli C; Rastelli G
    Drug Discov Today; 2015 Jun; 20(6):718-35. PubMed ID: 25687212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structure-based virtual screening approach toward the discovery of histone deacetylase inhibitors: identification of promising zinc-chelating groups.
    Park H; Kim S; Kim YE; Lim SJ
    ChemMedChem; 2010 Apr; 5(4):591-7. PubMed ID: 20157916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone deacetylase inhibitors: structure-based modeling and isoform-selectivity prediction.
    Silvestri L; Ballante F; Mai A; Marshall GR; Ragno R
    J Chem Inf Model; 2012 Aug; 52(8):2215-35. PubMed ID: 22762501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring inhibitor release pathways in histone deacetylases using random acceleration molecular dynamics simulations.
    Kalyaanamoorthy S; Chen YP
    J Chem Inf Model; 2012 Feb; 52(2):589-603. PubMed ID: 22263580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cyclodextrin-capped histone deacetylase inhibitor.
    Amin J; Puglisi A; Clarke J; Milton J; Wang M; Paranal RM; Bradner JE; Spencer J
    Bioorg Med Chem Lett; 2013 Jun; 23(11):3346-8. PubMed ID: 23591111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand and structure based pharmacophore modeling to facilitate novel histone deacetylase 8 inhibitor design.
    Thangapandian S; John S; Sakkiah S; Lee KW
    Eur J Med Chem; 2010 Oct; 45(10):4409-17. PubMed ID: 20656379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function analysis of the conserved tyrosine and diverse π-stacking among class I histone deacetylases: a QM (DFT)/MM MD study.
    Zhou J; Xie H; Liu Z; Luo HB; Wu R
    J Chem Inf Model; 2014 Nov; 54(11):3162-71. PubMed ID: 25360823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxime amides as a novel zinc binding group in histone deacetylase inhibitors: synthesis, biological activity, and computational evaluation.
    Botta CB; Cabri W; Cini E; De Cesare L; Fattorusso C; Giannini G; Persico M; Petrella A; Rondinelli F; Rodriquez M; Russo A; Taddei M
    J Med Chem; 2011 Apr; 54(7):2165-82. PubMed ID: 21417297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chemical tuning of a weak zinc binding motif for histone deacetylase using electronic effects.
    McCarren P; Hall ML; Whitehead L
    Chem Biol Drug Des; 2012 Aug; 80(2):203-14. PubMed ID: 22429492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of ligand features essential for HDACs inhibitors by pharmacophore modeling.
    Chen YD; Jiang YJ; Zhou JW; Yu QS; You QD
    J Mol Graph Model; 2008 Apr; 26(7):1160-8. PubMed ID: 18061500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical approach to docking of zinc metalloproteinase inhibitors.
    Hu X; Balaz S; Shelver WH
    J Mol Graph Model; 2004 Mar; 22(4):293-307. PubMed ID: 15177081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Docking of hydroxamic acids into HDAC1 and HDAC8: a rationalization of activity trends and selectivities.
    Ortore G; Di Colo F; Martinelli A
    J Chem Inf Model; 2009 Dec; 49(12):2774-85. PubMed ID: 19947584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes.
    Lombardi PM; Cole KE; Dowling DP; Christianson DW
    Curr Opin Struct Biol; 2011 Dec; 21(6):735-43. PubMed ID: 21872466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, biological evaluation, and molecular docking of Ugi products containing a zinc-chelating moiety as novel inhibitors of histone deacetylases.
    Grolla AA; Podestà V; Chini MG; Di Micco S; Vallario A; Genazzani AA; Canonico PL; Bifulco G; Tron GC; Sorba G; Pirali T
    J Med Chem; 2009 May; 52(9):2776-85. PubMed ID: 19344175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of various zinc binding groups on inhibition of histone deacetylases 1-11.
    Madsen AS; Kristensen HM; Lanz G; Olsen CA
    ChemMedChem; 2014 Mar; 9(3):614-26. PubMed ID: 24375963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and biochemical analysis of 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoro-N-hydroxy-octanediamides as inhibitors of human histone deacetylases.
    Henkes LM; Haus P; Jäger F; Ludwig J; Meyer-Almes FJ
    Bioorg Med Chem; 2012 Jan; 20(2):985-95. PubMed ID: 22182579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.