These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 24364993)

  • 1. A GIS-based vulnerability assessment of brine contamination to aquatic resources from oil and gas development in eastern Sheridan County, Montana.
    Preston TM; Chesley-Preston TL; Thamke JN
    Sci Total Environ; 2014 Feb; 472():1152-62. PubMed ID: 24364993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk assessment of brine contamination to aquatic resources from energy development in glacial drift deposits: Williston Basin, USA.
    Preston TM; Chesley-Preston TL
    Sci Total Environ; 2015 Mar; 508():534-45. PubMed ID: 25468531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Widespread legacy brine contamination from oil production reduces survival of chorus frog larvae.
    Hossack BR; Puglis HJ; Battaglin WA; Anderson CW; Honeycutt RK; Smalling KL
    Environ Pollut; 2017 Dec; 231(Pt 1):742-751. PubMed ID: 28863397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of brine contamination from energy development on wetland macroinvertebrate community structure in the Prairie Pothole Region.
    Preston TM; Borgreen MJ; Ray AM
    Environ Pollut; 2018 Aug; 239():722-732. PubMed ID: 29723822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Associations between environmental pollutants and larval amphibians in wetlands contaminated by energy-related brines are potentially mediated by feeding traits.
    Smalling KL; Anderson CW; Honeycutt RK; Cozzarelli IM; Preston T; Hossack BR
    Environ Pollut; 2019 May; 248():260-268. PubMed ID: 30798027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality and age of shallow groundwater in the Bakken Formation production area, Williston Basin, Montana and North Dakota.
    McMahon PB; Caldwell RR; Galloway JM; Valder JF; Hunt AG
    Ground Water; 2015 Apr; 53 Suppl 1():81-94. PubMed ID: 25392910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring and modeling wetland chloride concentrations in relationship to oil and gas development.
    Post van der Burg M; Tangen BA
    J Environ Manage; 2015 Mar; 150():120-127. PubMed ID: 25460425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drinking water while fracking: now and in the future.
    Brantley SL
    Ground Water; 2015; 53(1):21-3. PubMed ID: 25713828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production.
    Lockhart KM; King AM; Harter T
    J Contam Hydrol; 2013 Aug; 151():140-54. PubMed ID: 23800783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Groundwater vulnerability assessment for the Banyas Catchment of the Syrian coastal area using GIS and the RISKE method.
    Kattaa B; Al-Fares W; Al Charideh AR
    J Environ Manage; 2010 May; 91(5):1103-10. PubMed ID: 20133034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand.
    Thapinta A; Hudak PF
    Environ Int; 2003 Apr; 29(1):87-93. PubMed ID: 12605941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting attenuation of salinized surface- and groundwater-resources from legacy energy development in the Prairie Pothole Region.
    Preston TM; Anderson CW; Thamke JN; Hossack BR; Skalak KJ; Cozzarelli IM
    Sci Total Environ; 2019 Nov; 690():522-533. PubMed ID: 31301493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying crop vulnerability to groundwater abstraction: modelling and expert knowledge in a GIS.
    Procter C; Comber L; Betson M; Buckley D; Frost A; Lyons H; Riding A; Voyce K
    J Environ Manage; 2006 Nov; 81(3):296-306. PubMed ID: 16963176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of geochemical stressors on shallow groundwater quality.
    An YJ; Kampbell DH; Jeong SW; Jewell KP; Masoner JR
    Sci Total Environ; 2005 Sep; 348(1-3):257-66. PubMed ID: 16162329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A prediction method for radon in groundwater using GIS and multivariate statistics.
    Skeppström K; Olofsson B
    Sci Total Environ; 2006 Aug; 367(2-3):666-80. PubMed ID: 16580708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of groundwater vulnerability in the Yinchuan Plain, Northwest China using OREADIC.
    Qian H; Li P; Howard KW; Yang C; Zhang X
    Environ Monit Assess; 2012 Jun; 184(6):3613-28. PubMed ID: 21773864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geogenic arsenic and other trace elements in the shallow hydrogeologic system of Southern Poopó Basin, Bolivian Altiplano.
    Ormachea Muñoz M; Wern H; Johnsson F; Bhattacharya P; Sracek O; Thunvik R; Quintanilla J; Bundschuh J
    J Hazard Mater; 2013 Nov; 262():924-40. PubMed ID: 24091126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Causes and risk evaluation of oil and brine contamination in the Lower Cretaceous Continental Intercalaire aquifer in the Kebili region of southern Tunisia using chemical fingerprinting techniques.
    Besser H; Hamed Y
    Environ Pollut; 2019 Oct; 253():412-423. PubMed ID: 31325886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling assessment of regional groundwater contamination due to historic smelter emissions of heavy metals.
    van der Grift B; Griffioen J
    J Contam Hydrol; 2008 Feb; 96(1-4):48-68. PubMed ID: 18031865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.