BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 24364994)

  • 1. A comprehensive structural evaluation of humic substances using several fluorescence techniques before and after ozonation. Part II: evaluation of structural changes following ozonation.
    Rodríguez FJ; Schlenger P; García-Valverde M
    Sci Total Environ; 2014 Apr; 476-477():731-42. PubMed ID: 24364994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive structural evaluation of humic substances using several fluorescence techniques before and after ozonation. Part I: structural characterization of humic substances.
    Rodríguez FJ; Schlenger P; García-Valverde M
    Sci Total Environ; 2014 Apr; 476-477():718-30. PubMed ID: 24364992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of humic substances isolated from Han River water and change in the structural and chemical characteristics by ozonation.
    Yu MJ; Kim YH; Han I; Kim HC
    Environ Technol; 2005 Sep; 26(9):1033-41. PubMed ID: 16196411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring changes in the structure and properties of humic substances following ozonation using UV-Vis, FTIR and (1)H NMR techniques.
    Rodríguez FJ; Schlenger P; García-Valverde M
    Sci Total Environ; 2016 Jan; 541():623-637. PubMed ID: 26433328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of organic membrane foulants in a submerged membrane bioreactor with pre-ozonation using three-dimensional excitation-emission matrix fluorescence spectroscopy.
    Liu T; Chen ZL; Yu WZ; You SJ
    Water Res; 2011 Feb; 45(5):2111-21. PubMed ID: 21269657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ozonation of Han River humic substances.
    Yu MJ; Kim YH; Han I; Kim HC
    Water Sci Technol; 2002; 46(11-12):21-6. PubMed ID: 12523727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The degradation processes of refractory substances in nanofiltration concentrated leachate using micro-ozonation.
    Wang H; Wang Y; Lou Z; Zhu N; Yuan H
    Waste Manag; 2017 Nov; 69():274-280. PubMed ID: 28886976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence spectroscopic characterization of DOM fractions isolated from a filtered river water after ozonation and catalytic ozonation.
    Zhang T; Lu J; Ma J; Qiang Z
    Chemosphere; 2008 Mar; 71(5):911-21. PubMed ID: 18190948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of humic substances from reverse osmosis (RO) and nanofiltration (NF) concentrated leachate using continuously ozone generation-reaction treatment equipment.
    Wang H; Wang YN; Li X; Sun Y; Wu H; Chen D
    Waste Manag; 2016 Oct; 56():271-9. PubMed ID: 27478023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the apparent rate constants of the degradation of humic substances by ozonation and modeling of the removal of humic substances from the aqueous solutions with neural network.
    Oguz E; Tortum A; Keskinler B
    J Hazard Mater; 2008 Sep; 157(2-3):455-63. PubMed ID: 18289778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of preozonation on the adsorptivity of humic substances onto activated carbon.
    Rodríguez FJ; García-Valverde M
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21980-21988. PubMed ID: 27539467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elimination of UV-quenching substances from MBR- and SAARB-treated mature landfill leachates in an ozonation process: A comparative study.
    Chen W; Li Q
    Chemosphere; 2020 Mar; 242():125256. PubMed ID: 31704524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of spectral responses of humic substances upon UV irradiation using two-dimensional correlation spectroscopy.
    Hur J; Jung KY; Jung YM
    Water Res; 2011 Apr; 45(9):2965-74. PubMed ID: 21481908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of correlation spectroscopy (COS) method for analyzing fluorescence excitation emission matrix (EEM): A case study of effluent organic matter (EfOM) ozonation.
    Yu H; Qu F; Zhang X; Shao S; Rong H; Liang H; Bai L; Ma J
    Chemosphere; 2019 Aug; 228():35-43. PubMed ID: 31022618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of humic acids on nitrobenzene oxidation by ozonation and O3/UV processes.
    Latifoglu A; Gurol MD
    Water Res; 2003 Apr; 37(8):1879-89. PubMed ID: 12697231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of O
    Stylianou SK; Katsoyiannis IA; Ernst M; Zouboulis AI
    Environ Sci Pollut Res Int; 2018 May; 25(13):12246-12255. PubMed ID: 28656574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of ozone-UV pretreatment on coagulation of raw water with high organic matter].
    Li H; Wang WD; Wang XC; Liu YJ; Ding ZZ; Jin PK
    Huan Jing Ke Xue; 2010 Aug; 31(8):1807-12. PubMed ID: 21090297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of metal ions binding of humic substances using fluorescence emission and synchronous-scan spectroscopy.
    Piana MJ; Zahir KO
    J Environ Sci Health B; 2000 Jan; 35(1):87-102. PubMed ID: 10693057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ozonation of trichloroethylene in acetic acid solution with soluble and solid humic acid.
    Alcántara-Garduño ME; Okuda T; Nishijima W; Okada M
    J Hazard Mater; 2008 Dec; 160(2-3):662-7. PubMed ID: 18511186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the trihalomethane formation potential of aquatic fulvic and humic acids fractionated using thin-layer chromatography.
    Eish MY; Wells MJ
    J Chromatogr A; 2006 May; 1116(1-2):272-6. PubMed ID: 16620862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.