These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24365210)

  • 1. Engineering of carboligase activity reaction in Candida glabrata for acetoin production.
    Li S; Xu N; Liu L; Chen J
    Metab Eng; 2014 Mar; 22():32-9. PubMed ID: 24365210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compartmentalizing metabolic pathway in Candida glabrata for acetoin production.
    Li S; Liu L; Chen J
    Metab Eng; 2015 Mar; 28():1-7. PubMed ID: 25479455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of acetoin production in Candida glabrata by in silico-aided metabolic engineering.
    Li S; Gao X; Xu N; Liu L; Chen J
    Microb Cell Fact; 2014 Apr; 13(1):55. PubMed ID: 24725668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [System metabolic engineering strategies for 2,3-butandione production by Torulopsis glabrata].
    Gao X; Xu N; Li S; Liu L
    Wei Sheng Wu Xue Bao; 2014 Apr; 54(4):398-407. PubMed ID: 25007652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Candida glabrata for diacetyl production.
    Gao X; Xu N; Li S; Liu L
    PLoS One; 2014; 9(3):e89854. PubMed ID: 24614328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Torulopsis glabrata for malate production.
    Chen X; Xu G; Xu N; Zou W; Zhu P; Liu L; Chen J
    Metab Eng; 2013 Sep; 19():10-6. PubMed ID: 23707987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial modulation and cofactor engineering of key pathway enzymes for fumarate production in Candida glabrata.
    Chen X; Li Y; Tong T; Liu L
    Biotechnol Bioeng; 2019 Mar; 116(3):622-630. PubMed ID: 30582631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis.
    Bao T; Zhang X; Rao Z; Zhao X; Zhang R; Yang T; Xu Z; Yang S
    PLoS One; 2014; 9(7):e102951. PubMed ID: 25036158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Significantly increase of glycolytic flux and pyruvate productivity in Torulopsis glabrata by heterologous expression of NADH alternative oxidase].
    Qin Y; Dong Z; Zhou J; Liu L; Chen J
    Wei Sheng Wu Xue Bao; 2009 Nov; 49(11):1483-8. PubMed ID: 20112677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance.
    Liang K; Shen CR
    Metab Eng; 2017 Jan; 39():181-191. PubMed ID: 27931827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced pyruvate production in Candida glabrata by carrier engineering.
    Luo Z; Liu S; Du G; Xu S; Zhou J; Chen J
    Biotechnol Bioeng; 2018 Feb; 115(2):473-482. PubMed ID: 29044478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction and analysis of the genome-scale metabolic network of Candida glabrata.
    Xu N; Liu L; Zou W; Liu J; Hua Q; Chen J
    Mol Biosyst; 2013 Feb; 9(2):205-16. PubMed ID: 23172360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Escherichia coli for acetaldehyde overproduction using pyruvate decarboxylase from Zymomonas mobilis.
    Balagurunathan B; Tan L; Zhao H
    Enzyme Microb Technol; 2018 Feb; 109():58-65. PubMed ID: 29224627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Engineering of Microorganisms to Produce Pyruvate and Derived Compounds.
    Luo Q; Ding N; Liu Y; Zhang H; Fang Y; Yin L
    Molecules; 2023 Feb; 28(3):. PubMed ID: 36771084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production.
    Bai F; Dai L; Fan J; Truong N; Rao B; Zhang L; Shen Y
    J Ind Microbiol Biotechnol; 2015 May; 42(5):779-86. PubMed ID: 25663525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome mining, in silico validation and phase selection of a novel aldo-keto reductase from Candida glabrata for biotransformation.
    Basak S; Sahoo NG; Pavanasam AK
    Bioengineered; 2018 Jan; 9(1):186-195. PubMed ID: 28644714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial engineering of the TCA cycle for fumarate production.
    Chen X; Dong X; Wang Y; Zhao Z; Liu L
    Metab Eng; 2015 Sep; 31():62-73. PubMed ID: 25708514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing by-products formation.
    Jang JW; Jung HM; Im DK; Jung MY; Oh MK
    Enzyme Microb Technol; 2017 Nov; 106():114-118. PubMed ID: 28859805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis.
    Bao T; Zhang X; Zhao X; Rao Z; Yang T; Yang S
    Biotechnol J; 2015 Aug; 10(8):1298-306. PubMed ID: 26129872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Bacillus subtilis for the co-production of uridine and acetoin.
    Fan X; Wu H; Jia Z; Li G; Li Q; Chen N; Xie X
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8753-8762. PubMed ID: 30120523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.