BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24365634)

  • 21. Wood day capacitance is related to water content, wood density, and anatomy across 30 temperate tree species.
    Ziemińska K; Rosa E; Gleason SM; Holbrook NM
    Plant Cell Environ; 2020 Dec; 43(12):3048-3067. PubMed ID: 32935340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomechanical design and long-term stability of trees: morphological and wood traits involved in the balance between weight increase and the gravitropic reaction.
    Alméras T; Fournier M
    J Theor Biol; 2009 Feb; 256(3):370-81. PubMed ID: 19013473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydraulic differences along the water transport system of South American Nothofagus species: do leaves protect the stem functionality?
    Bucci SJ; Scholz FG; Campanello PI; Montti L; Jimenez-Castillo M; Rockwell FA; Manna LL; Guerra P; Bernal PL; Troncoso O; Enricci J; Holbrook MN; Goldstein G
    Tree Physiol; 2012 Jul; 32(7):880-93. PubMed ID: 22684354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in hydraulic conductivity, mechanical properties, and density reflecting the fall in strain along the lateral roots of two species of tropical trees.
    Christensen-Dalsgaard KK; Ennos AR; Fournier M
    J Exp Bot; 2007; 58(15-16):4095-105. PubMed ID: 18039738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Axial and radial water transport and internal water storage in tropical forest canopy trees.
    James SA; Meinzer FC; Goldstein G; Woodruff D; Jones T; Restom T; Mejia M; Clearwater M; Campanello P
    Oecologia; 2003 Jan; 134(1):37-45. PubMed ID: 12647177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solid state NMR and IR characterization of wood polymer structure in relation to tree provenance.
    Santoni I; Callone E; Sandak A; Sandak J; Dirè S
    Carbohydr Polym; 2015 Mar; 117():710-721. PubMed ID: 25498692
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modelling of the hygroelastic behaviour of normal and compression wood tracheids.
    Joffre T; Neagu RC; Bardage SL; Gamstedt EK
    J Struct Biol; 2014 Jan; 185(1):89-98. PubMed ID: 24184469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variations in the morphology of wood structure can explain why hardwood species of similar density have very different resistances to impact and compressive loading.
    Hepworth DG; Vincent JF; Stringer G; Jeronimidis G
    Philos Trans A Math Phys Eng Sci; 2002 Feb; 360(1791):255-72. PubMed ID: 16210180
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Near-infrared spectroscopic investigation of the hydrothermal degradation mechanism of wood as an analogue of archaeological wood. Part II: hardwood.
    Inagaki T; Mitsui K; Tsuchikawa S
    Appl Spectrosc; 2009 Jul; 63(7):753-8. PubMed ID: 19589212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Duration and extension of anatomical changes in wood structure after cambial injury.
    Arbellay E; Fonti P; Stoffel M
    J Exp Bot; 2012 May; 63(8):3271-7. PubMed ID: 22378953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential anatomical responses to elevated CO2 in saplings of four hardwood species.
    Watanabe Y; Satomura T; Sasa K; Funada R; Koike T
    Plant Cell Environ; 2010 Jul; 33(7):1101-11. PubMed ID: 20199624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of the hydraulic efficiency of a palm species (Iriartea deltoidea) with other wood types.
    Renninger HJ; McCulloh KA; Phillips N
    Tree Physiol; 2013 Feb; 33(2):152-60. PubMed ID: 23296336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Micromechanical modelling of cortical bone.
    Mullins LP; McGarry JP; Bruzzi MS; McHugh PE
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):159-69. PubMed ID: 17558645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lignification and tension wood.
    Pilate G; Chabbert B; Cathala B; Yoshinaga A; Leplé JC; Laurans F; Lapierre C; Ruel K
    C R Biol; 2004; 327(9-10):889-901. PubMed ID: 15587080
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wood properties and trunk allometry of co-occurring rainforest canopy trees in a cyclone-prone environment.
    Read J; Evans R; Sanson GD; Kerr S; Jaffré T
    Am J Bot; 2011 Nov; 98(11):1762-72. PubMed ID: 21984616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hemicellulose-rich transparent wood: Microstructure and macroscopic properties.
    Jiang Y; Zhang M; Weng M; Liu X; Rong X; Huang Q; Chen G; Wang S; Wang L
    Carbohydr Polym; 2022 Nov; 296():119925. PubMed ID: 36087978
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of thermal treatment on chemical, mechanical and colour traits in Norway spruce wood.
    Kačíková D; Kačík F; Cabalová I; Durkovič J
    Bioresour Technol; 2013 Sep; 144():669-74. PubMed ID: 23871194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes of wood cell walls in response to hygro-mechanical steam treatment.
    Guo J; Song K; Salmén L; Yin Y
    Carbohydr Polym; 2015 Jan; 115():207-14. PubMed ID: 25439887
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of wood mass density and mechanical constraints in the economy of tree architecture.
    Anten NP; Schieving F
    Am Nat; 2010 Feb; 175(2):250-60. PubMed ID: 20028240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cholla cactus wood (Cylindropuntia imbricata): Hierarchical structure and micromechanical properties.
    Morankar S; Luktuke A; Nieto-Valeiras E; Mistry Y; Bhate D; Penick CA; Chawla N
    Acta Biomater; 2024 Jan; 174():269-280. PubMed ID: 38072224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.