BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 24365635)

  • 1. The role of series ankle elasticity in bipedal walking.
    Zelik KE; Huang TW; Adamczyk PG; Kuo AD
    J Theor Biol; 2014 Apr; 346():75-85. PubMed ID: 24365635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.
    Huang TW; Shorter KA; Adamczyk PG; Kuo AD
    J Exp Biol; 2015 Nov; 218(Pt 22):3541-50. PubMed ID: 26385330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study.
    Bregman DJ; van der Krogt MM; de Groot V; Harlaar J; Wisse M; Collins SH
    Clin Biomech (Bristol, Avon); 2011 Nov; 26(9):955-61. PubMed ID: 21723012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking.
    Malcolm P; Quesada RE; Caputo JM; Collins SH
    J Neuroeng Rehabil; 2015 Feb; 12():21. PubMed ID: 25889201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic coupling of limb joints enables faster bipedal walking.
    Dean JC; Kuo AD
    J R Soc Interface; 2009 Jun; 6(35):561-73. PubMed ID: 18957360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining an Artificial Gastrocnemius and Powered Ankle Prosthesis: Effects on Transtibial Prosthesis User Gait.
    Ziemnicki DM; McDonald KA; Wolf DN; Molitor SL; Egolf JB; Gupta M; Zelik KE
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36661069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking.
    Caputo JM; Collins SH
    Sci Rep; 2014 Dec; 4():7213. PubMed ID: 25467389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Simple Model to Estimate Plantarflexor Muscle-Tendon Mechanics and Energetics During Walking With Elastic Ankle Exoskeletons.
    Sawicki GS; Khan NS
    IEEE Trans Biomed Eng; 2016 May; 63(5):914-923. PubMed ID: 26485350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical effects of passive hip springs during walking.
    Haufe FL; Wolf P; Riener R; Grimmer M
    J Biomech; 2020 Jan; 98():109432. PubMed ID: 31662197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Torque Curve Optimization of Ankle Push-Off in Walking Bipedal Robots Using Genetic Algorithm.
    Ji Q; Qian Z; Ren L; Ren L
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking.
    Zelik KE; Collins SH; Adamczyk PG; Segal AD; Klute GK; Morgenroth DC; Hahn ME; Orendurff MS; Czerniecki JM; Kuo AD
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):411-9. PubMed ID: 21708509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adding adaptable toe stiffness affects energetic efficiency and dynamic behaviors of bipedal walking.
    Sun S; Huang Y; Wang Q
    J Theor Biol; 2016 Jan; 388():108-18. PubMed ID: 26519906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The energetic effect of hip flexion and retraction in walking at different speeds: a modeling study.
    Jin J; Kistemaker D; van Dieën JH; Daffertshofer A; Bruijn SM
    PeerJ; 2023; 11():e14662. PubMed ID: 36691478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination of push-off and collision determine the mechanical work of step-to-step transitions when isolated from human walking.
    Soo CH; Donelan JM
    Gait Posture; 2012 Feb; 35(2):292-7. PubMed ID: 22030156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical effects of augmented ankle power output during human walking.
    Fickey SN; Browne MG; Franz JR
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30266784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unified perspective on ankle push-off in human walking.
    Zelik KE; Adamczyk PG
    J Exp Biol; 2016 Dec; 219(Pt 23):3676-3683. PubMed ID: 27903626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Six degree-of-freedom analysis of hip, knee, ankle and foot provides updated understanding of biomechanical work during human walking.
    Zelik KE; Takahashi KZ; Sawicki GS
    J Exp Biol; 2015 Mar; 218(Pt 6):876-86. PubMed ID: 25788726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastic ankle muscle-tendon interactions are adjusted to produce acceleration during walking in humans.
    Farris DJ; Raiteri BJ
    J Exp Biol; 2017 Nov; 220(Pt 22):4252-4260. PubMed ID: 28954818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments.
    Harper NG; Esposito ER; Wilken JM; Neptune RR
    Clin Biomech (Bristol, Avon); 2014 Sep; 29(8):877-84. PubMed ID: 25193884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.