These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 24365635)

  • 21. The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments.
    Harper NG; Esposito ER; Wilken JM; Neptune RR
    Clin Biomech (Bristol, Avon); 2014 Sep; 29(8):877-84. PubMed ID: 25193884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energetics of actively powered locomotion using the simplest walking model.
    Kuo AD
    J Biomech Eng; 2002 Feb; 124(1):113-20. PubMed ID: 11871597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed.
    Lai A; Schache AG; Lin YC; Pandy MG
    J Exp Biol; 2014 Sep; 217(Pt 17):3159-68. PubMed ID: 24948642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation.
    Segal AD; Zelik KE; Klute GK; Morgenroth DC; Hahn ME; Orendurff MS; Adamczyk PG; Collins SH; Kuo AD; Czerniecki JM
    Hum Mov Sci; 2012 Aug; 31(4):918-31. PubMed ID: 22100728
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.
    Kim M; Collins SH
    J Neuroeng Rehabil; 2015 May; 12():43. PubMed ID: 25928176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Walking with increased ankle pushoff decreases hip muscle moments.
    Lewis CL; Ferris DP
    J Biomech; 2008 Jul; 41(10):2082-9. PubMed ID: 18606419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distal-to-proximal joint mechanics redistribution is a main contributor to reduced walking economy in older adults.
    Delabastita T; Hollville E; Catteau A; Cortvriendt P; De Groote F; Vanwanseele B
    Scand J Med Sci Sports; 2021 May; 31(5):1036-1047. PubMed ID: 33527504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recycling energy to restore impaired ankle function during human walking.
    Collins SH; Kuo AD
    PLoS One; 2010 Feb; 5(2):e9307. PubMed ID: 20174659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptations for bipedal walking: Musculoskeletal structure and three-dimensional joint mechanics of humans and bipedal chimpanzees (Pan troglodytes).
    O'Neill MC; Demes B; Thompson NE; Larson SG; Stern JT; Umberger BR
    J Hum Evol; 2022 Jul; 168():103195. PubMed ID: 35596976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking.
    Jackson RW; Dembia CL; Delp SL; Collins SH
    J Exp Biol; 2017 Jun; 220(Pt 11):2082-2095. PubMed ID: 28341663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The contribution of passive-elastic mechanisms to lower extremity joint kinetics during human walking.
    Whittington B; Silder A; Heiderscheit B; Thelen DG
    Gait Posture; 2008 May; 27(4):628-34. PubMed ID: 17928228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modifying ankle foot orthosis stiffness in patients with calf muscle weakness: gait responses on group and individual level.
    Waterval NFJ; Nollet F; Harlaar J; Brehm MA
    J Neuroeng Rehabil; 2019 Oct; 16(1):120. PubMed ID: 31623670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of Knee-Ankle-Foot orthosis stiffness on the parameters of walking.
    Abtahi SMA; Jamshidi N; Ghaziasgar A
    Comput Methods Biomech Biomed Engin; 2018 Feb; 21(3):201-207. PubMed ID: 29465260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanics and energetics of incline walking with robotic ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):32-41. PubMed ID: 19088208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo behavior of the human soleus muscle with increasing walking and running speeds.
    Lai A; Lichtwark GA; Schache AG; Lin YC; Brown NA; Pandy MG
    J Appl Physiol (1985); 2015 May; 118(10):1266-75. PubMed ID: 25814636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion.
    Kerkum YL; Buizer AI; van den Noort JC; Becher JG; Harlaar J; Brehm MA
    PLoS One; 2015; 10(11):e0142878. PubMed ID: 26600039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spring-like Ankle Foot Orthoses reduce the energy cost of walking by taking over ankle work.
    Bregman DJ; Harlaar J; Meskers CG; de Groot V
    Gait Posture; 2012 Jan; 35(1):148-53. PubMed ID: 22050974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compensatory sagittal plane ankle gait mechanics: Are they present in patients with a weak or stiff hip?
    Stevens WR; Podeszwa DA; Tulchin-Francis K
    Gait Posture; 2019 Oct; 74():250-254. PubMed ID: 31590046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.