These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24365653)

  • 41. Hemispheric asymmetries in bilinguals: tongue similarity affects lateralization of second language.
    D'Anselmo A; Reiterer S; Zuccarini F; Tommasi L; Brancucci A
    Neuropsychologia; 2013 Jun; 51(7):1187-94. PubMed ID: 23566890
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bach speaks: a cortical "language-network" serves the processing of music.
    Koelsch S; Gunter TC; v Cramon DY; Zysset S; Lohmann G; Friederici AD
    Neuroimage; 2002 Oct; 17(2):956-66. PubMed ID: 12377169
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Musical training enhances automatic encoding of melodic contour and interval structure.
    Fujioka T; Trainor LJ; Ross B; Kakigi R; Pantev C
    J Cogn Neurosci; 2004; 16(6):1010-21. PubMed ID: 15298788
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neuromagnetic responses to chords are modified by preceding musical scale.
    Otsuka A; Kuriki S; Murata N; Hasegawa T
    Neurosci Res; 2008 Jan; 60(1):50-5. PubMed ID: 17981351
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Activation of the left superior temporal gyrus of musicians by music-derived sounds.
    Matsui T; Tanaka S; Kazai K; Tsuzaki M; Katayose H
    Neuroreport; 2013 Jan; 24(1):41-5. PubMed ID: 23196415
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Musical and verbal semantic memory: two distinct neural networks?
    Groussard M; Viader F; Hubert V; Landeau B; Abbas A; Desgranges B; Eustache F; Platel H
    Neuroimage; 2010 Feb; 49(3):2764-73. PubMed ID: 19854279
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Brain networks that track musical structure.
    Janata P
    Ann N Y Acad Sci; 2005 Dec; 1060():111-24. PubMed ID: 16597758
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characteristic functional networks in high- versus low-proficiency second language speakers detected also during native language processing: an explorative EEG coherence study in 6 frequency bands.
    Reiterer S; Hemmelmann C; Rappelsberger P; Berger ML
    Brain Res Cogn Brain Res; 2005 Oct; 25(2):566-78. PubMed ID: 16185851
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm.
    Vuust P; Brattico E; Seppänen M; Näätänen R; Tervaniemi M
    Neuropsychologia; 2012 Jun; 50(7):1432-43. PubMed ID: 22414595
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of musical experience on hemispheric lateralization in musical feature processing.
    Ono K; Nakamura A; Yoshiyama K; Kinkori T; Bundo M; Kato T; Ito K
    Neurosci Lett; 2011 Jun; 496(2):141-5. PubMed ID: 21513771
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The reliability of continuous brain responses during naturalistic listening to music.
    Burunat I; Toiviainen P; Alluri V; Bogert B; Ristaniemi T; Sams M; Brattico E
    Neuroimage; 2016 Jan; 124(Pt A):224-231. PubMed ID: 26364862
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of musical expertise on segmental and tonal processing in Mandarin Chinese.
    Marie C; Delogu F; Lampis G; Belardinelli MO; Besson M
    J Cogn Neurosci; 2011 Oct; 23(10):2701-15. PubMed ID: 20946053
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mental reversal of imagined melodies: a role for the posterior parietal cortex.
    Zatorre RJ; Halpern AR; Bouffard M
    J Cogn Neurosci; 2010 Apr; 22(4):775-89. PubMed ID: 19366283
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A multimodal neural network recruited by expertise with musical notation.
    Wong YK; Gauthier I
    J Cogn Neurosci; 2010 Apr; 22(4):695-713. PubMed ID: 19320551
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional specializations for music processing in the human newborn brain.
    Perani D; Saccuman MC; Scifo P; Spada D; Andreolli G; Rovelli R; Baldoli C; Koelsch S
    Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4758-63. PubMed ID: 20176953
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential alpha coherence hemispheric patterns in men and women during pleasant and unpleasant musical emotions.
    Flores-Gutiérrez EO; Díaz JL; Barrios FA; Guevara MA; Del Río-Portilla Y; Corsi-Cabrera M; Del Flores-Gutiérrez EO
    Int J Psychophysiol; 2009 Jan; 71(1):43-9. PubMed ID: 18755225
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Decoding Musical Training from Dynamic Processing of Musical Features in the Brain.
    Saari P; Burunat I; Brattico E; Toiviainen P
    Sci Rep; 2018 Jan; 8(1):708. PubMed ID: 29335643
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expertise in folk music alters the brain processing of Western harmony.
    Tervaniemi M; Tupala T; Brattico E
    Ann N Y Acad Sci; 2012 Apr; 1252():147-51. PubMed ID: 22524352
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Melody effects on ERANm elicited by harmonic irregularity in musical syntax.
    Kim CH; Lee S; Kim JS; Seol J; Yi SW; Chung CK
    Brain Res; 2014 Apr; 1560():36-45. PubMed ID: 24607297
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Word order processing in the bilingual brain.
    Saur D; Baumgaertner A; Moehring A; Büchel C; Bonnesen M; Rose M; Musso M; Meisel JM
    Neuropsychologia; 2009 Jan; 47(1):158-68. PubMed ID: 18771674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.