These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 24365744)
1. Coffee enhances the expression of chaperones and antioxidant proteins in rats with nonalcoholic fatty liver disease. Salomone F; Li Volti G; Vitaglione P; Morisco F; Fogliano V; ZappalĂ A; Palmigiano A; Garozzo D; Caporaso N; D'Argenio G; Galvano F Transl Res; 2014 Jun; 163(6):593-602. PubMed ID: 24365744 [TBL] [Abstract][Full Text] [Related]
2. Proteomic analysis of fructose-induced fatty liver in hamsters. Zhang L; Perdomo G; Kim DH; Qu S; Ringquist S; Trucco M; Dong HH Metabolism; 2008 Aug; 57(8):1115-24. PubMed ID: 18640390 [TBL] [Abstract][Full Text] [Related]
3. Coffee Restores Expression of lncRNAs Involved in Steatosis and Fibrosis in a Mouse Model of NAFLD. Di Mauro S; Salomone F; Scamporrino A; Filippello A; Morisco F; Guido M; Lembo V; Cossiga V; Pipitone RM; Grimaudo S; Malaguarnera R; Purrello F; Piro S Nutrients; 2021 Aug; 13(9):. PubMed ID: 34578828 [TBL] [Abstract][Full Text] [Related]
4. Coffee prevents fatty liver disease induced by a high-fat diet by modulating pathways of the gut-liver axis. Vitaglione P; Mazzone G; Lembo V; D'Argenio G; Rossi A; Guido M; Savoia M; Salomone F; Mennella I; De Filippis F; Ercolini D; Caporaso N; Morisco F J Nutr Sci; 2019; 8():e15. PubMed ID: 31037218 [TBL] [Abstract][Full Text] [Related]
5. Proteomic analysis of the effect of high-fat-diet and voluntary physical activity on mouse liver. So B; Ji LL; Imdad S; Kang C PLoS One; 2022; 17(8):e0273049. PubMed ID: 35981048 [TBL] [Abstract][Full Text] [Related]
6. Functional proteomic analysis of nonalcoholic fatty liver disease in rat models: enoyl-coenzyme a hydratase down-regulation exacerbates hepatic steatosis. Zhang X; Yang J; Guo Y; Ye H; Yu C; Xu C; Xu L; Wu S; Sun W; Wei H; Gao X; Zhu Y; Qian X; Jiang Y; Li Y; He F Hepatology; 2010 Apr; 51(4):1190-9. PubMed ID: 20162621 [TBL] [Abstract][Full Text] [Related]
7. Long term N-acetylcysteine administration rescues liver steatosis via endoplasmic reticulum stress with unfolded protein response in mice. Tsai CC; Chen YJ; Yu HR; Huang LT; Tain YL; Lin IC; Sheen JM; Wang PW; Tiao MM Lipids Health Dis; 2020 May; 19(1):105. PubMed ID: 32450865 [TBL] [Abstract][Full Text] [Related]
8. Coffee reduces liver damage in a rat model of steatohepatitis: the underlying mechanisms and the role of polyphenols and melanoidins. Vitaglione P; Morisco F; Mazzone G; Amoruso DC; Ribecco MT; Romano A; Fogliano V; Caporaso N; D'Argenio G Hepatology; 2010 Nov; 52(5):1652-61. PubMed ID: 21038411 [TBL] [Abstract][Full Text] [Related]
9. Integrated hepatic transcriptome and proteome analysis of mice with high-fat diet-induced nonalcoholic fatty liver disease. Kirpich IA; Gobejishvili LN; Bon Homme M; Waigel S; Cave M; Arteel G; Barve SS; McClain CJ; Deaciuc IV J Nutr Biochem; 2011 Jan; 22(1):38-45. PubMed ID: 20303728 [TBL] [Abstract][Full Text] [Related]
10. Comparative proteomic analysis using 2DE-LC-MS/MS reveals the mechanism of Fuzhuan brick tea extract against hepatic fat accumulation in rats with nonalcoholic fatty liver disease. Liu Z; Lin Y; Zhang S; Wang D; Liang Q; Luo G Electrophoresis; 2015 Sep; 36(17):2002-16. PubMed ID: 26036873 [TBL] [Abstract][Full Text] [Related]
11. Pathways affected by 3,5-diiodo-l-thyronine in liver of high fat-fed rats: evidence from two-dimensional electrophoresis, blue-native PAGE, and mass spectrometry. Silvestri E; Cioffi F; Glinni D; Ceccarelli M; Lombardi A; de Lange P; Chambery A; Severino V; Lanni A; Goglia F; Moreno M Mol Biosyst; 2010 Nov; 6(11):2256-71. PubMed ID: 20844788 [TBL] [Abstract][Full Text] [Related]
13. Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics for the investigation of the effect of Hugan Qingzhi on non-alcoholic fatty liver disease in rats. Yao X; Xia F; Tang W; Xiao C; Yang M; Zhou B J Ethnopharmacol; 2018 Feb; 212():208-215. PubMed ID: 29031784 [TBL] [Abstract][Full Text] [Related]
14. Changes in endoplasmic reticulum stress proteins and aldolase A in cells exposed to dopamine. Dukes AA; Van Laar VS; Cascio M; Hastings TG J Neurochem; 2008 Jul; 106(1):333-46. PubMed ID: 18384645 [TBL] [Abstract][Full Text] [Related]
15. Hypothermia produces rat liver proteomic changes as in hibernating mammals but decreases endoplasmic reticulum chaperones. Oda T; Shimizu K; Yamaguchi A; Satoh K; Matsumoto K Cryobiology; 2012 Oct; 65(2):104-12. PubMed ID: 22640990 [TBL] [Abstract][Full Text] [Related]
16. Chaperones are the target in aloe-emodin-induced human lung nonsmall carcinoma H460 cell apoptosis. Lai MY; Hour MJ; Wing-Cheung Leung H; Yang WH; Lee HZ Eur J Pharmacol; 2007 Nov; 573(1-3):1-10. PubMed ID: 17643413 [TBL] [Abstract][Full Text] [Related]
17. Comparative proteomic analysis of fibrotic liver of rats fed high fat diet contained lard versus corn oil. Wang H; Sit WH; Tipoe GL; Liu Z; Wan JM Clin Nutr; 2017 Feb; 36(1):198-208. PubMed ID: 26646359 [TBL] [Abstract][Full Text] [Related]
18. Procyanidin B2 ameliorates free fatty acids-induced hepatic steatosis through regulating TFEB-mediated lysosomal pathway and redox state. Su H; Li Y; Hu D; Xie L; Ke H; Zheng X; Chen W Free Radic Biol Med; 2018 Oct; 126():269-286. PubMed ID: 30142454 [TBL] [Abstract][Full Text] [Related]
19. [Role of endoplasmic reticulum protein folding molecular chaperones in floxuridine-resistance choriocarcinoma JeG-3/FUDRA cell line]. Han B; Xiang Y; Feng FZ; Wan XR; Qian HL; Zhang XY; Meng XT; Lin C Zhonghua Fu Chan Ke Za Zhi; 2013 Jan; 48(1):41-5. PubMed ID: 23531250 [TBL] [Abstract][Full Text] [Related]
20. Salicornia Extract Ameliorates Salt-Induced Aggravation of Nonalcoholic Fatty Liver Disease in Obese Mice Fed a High-Fat Diet. Kim JH; Suk S; Jang WJ; Lee CH; Kim JE; Park JK; Kweon MH; Kim JH; Lee KW J Food Sci; 2017 Jul; 82(7):1765-1774. PubMed ID: 28608557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]