These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24365809)

  • 21. Ultraviolet and near-infrared femtosecond temporal pulse shaping with a new high-aspect-ratio one-dimensional micromirror array.
    Weber SM; Extermann J; Bonacina L; Noell W; Kiselev D; Waldis S; de Rooij NF; Wolf JP
    Opt Lett; 2010 Sep; 35(18):3102-4. PubMed ID: 20847792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frequency tunable near-infrared metamaterials based on VO2 phase transition.
    Dicken MJ; Aydin K; Pryce IM; Sweatlock LA; Boyd EM; Walavalkar S; Ma J; Atwater HA
    Opt Express; 2009 Sep; 17(20):18330-9. PubMed ID: 19907624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Broadband degenerate OPO for mid-infrared frequency comb generation.
    Leindecker N; Marandi A; Byer RL; Vodopyanov KL
    Opt Express; 2011 Mar; 19(7):6296-302. PubMed ID: 21451655
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomimetic antireflective hierarchical arrays.
    Xu H; Lu N; Shi G; Qi D; Yang B; Li H; Xu W; Chi L
    Langmuir; 2011 Apr; 27(8):4963-7. PubMed ID: 21438564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media.
    Gao M; Huang X; Yang P; Kattawar GW
    Appl Opt; 2013 Aug; 52(24):5869-79. PubMed ID: 24084986
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Realization of single-mode telluride rib waveguides for mid-IR applications between 10 and 20 μm.
    Vigreux C; Barthélémy E; Bastard L; Broquin JE; Barillot M; Ménard S; Parent G; Pradel A
    Opt Lett; 2011 Aug; 36(15):2922-4. PubMed ID: 21808359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption.
    Le F; Brandl DW; Urzhumov YA; Wang H; Kundu J; Halas NJ; Aizpurua J; Nordlander P
    ACS Nano; 2008 Apr; 2(4):707-18. PubMed ID: 19206602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scattering analysis for random antireflective structures on fused silica in the ultraviolet.
    Zhao J; Qi H; Wang H; He H; Zhang W
    Opt Lett; 2015 Nov; 40(22):5168-71. PubMed ID: 26565826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures.
    Huang YF; Chattopadhyay S; Jen YJ; Peng CY; Liu TA; Hsu YK; Pan CL; Lo HC; Hsu CH; Chang YH; Lee CS; Chen KH; Chen LC
    Nat Nanotechnol; 2007 Dec; 2(12):770-4. PubMed ID: 18654429
    [TBL] [Abstract][Full Text] [Related]  

  • 30. All-Silicon Ultra-Broadband Infrared Light Absorbers.
    Gorgulu K; Gok A; Yilmaz M; Topalli K; Bıyıklı N; Okyay AK
    Sci Rep; 2016 Dec; 6():38589. PubMed ID: 27924933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical properties of high aspect ratio plasma etched silicon nanowires: fabrication-induced variability dramatically reduces reflectance.
    Smyrnakis A; Almpanis E; Constantoudis V; Papanikolaou N; Gogolides E
    Nanotechnology; 2015 Feb; 26(8):085301. PubMed ID: 25648611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine.
    Lualdi M; Colombo A; Farina B; Tomatis S; Marchesini R
    Lasers Surg Med; 2001; 28(3):237-43. PubMed ID: 11295758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Newly Developed Broadband Antireflective Nanostructures by Coating a Low-Index MgF
    Yoo GY; Nurrosyid N; Lee S; Jeong Y; Yoon I; Kim C; Kim W; Jang SY; Do YR
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10626-10636. PubMed ID: 32030970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Infrared diffractive filtering for extreme ultraviolet multilayer Bragg reflectors.
    Medvedev VV; van den Boogaard AJ; van der Meer R; Yakshin AE; Louis E; Krivtsun VM; Bijkerk F
    Opt Express; 2013 Jul; 21(14):16964-74. PubMed ID: 23938545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of an anti-reflective microstructure on sapphire by femtosecond laser direct writing.
    Li QK; Cao JJ; Yu YH; Wang L; Sun YL; Chen QD; Sun HB
    Opt Lett; 2017 Feb; 42(3):543-546. PubMed ID: 28146523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resonant infrared transmission and effective medium response of subwavelength H-fractal apertures.
    Hou B; Liao XQ; Poon JK
    Opt Express; 2010 Feb; 18(4):3946-51. PubMed ID: 20389407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reflectance properties of silicon moth-eyes in response to variations in angle of incidence, polarisation and azimuth orientation.
    Asadollahbaik A; Boden SA; Charlton MD; Payne DN; Cox S; Bagnall DM
    Opt Express; 2014 Mar; 22 Suppl 2():A402-15. PubMed ID: 24922250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppression of backscattered diffraction from sub-wavelength 'moth-eye' arrays.
    Stavroulakis PI; Boden SA; Johnson T; Bagnall DM
    Opt Express; 2013 Jan; 21(1):1-11. PubMed ID: 23388890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Near-ideal optical metamaterial absorbers with super-octave bandwidth.
    Bossard JA; Lin L; Yun S; Liu L; Werner DH; Mayer TS
    ACS Nano; 2014 Feb; 8(2):1517-24. PubMed ID: 24472069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoimprinting reflow modified moth-eye structures in chalcogenide glass for enhanced broadband antireflection in the mid-infrared.
    Lotz M; Needham J; Jakobsen MH; Taboryski R
    Opt Lett; 2019 Sep; 44(17):4383-4386. PubMed ID: 31465408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.