These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24365809)

  • 61. Mid-infrared supercontinuum generation in fluoroindate fiber.
    Théberge F; Daigle JF; Vincent D; Mathieu P; Fortin J; Schmidt BE; Thiré N; Légaré F
    Opt Lett; 2013 Nov; 38(22):4683-5. PubMed ID: 24322105
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Optimization of Shapes and Sizes of Moth-Eye-Inspired Structures for the Enhancement of Their Antireflective Properties.
    Choi JS; An JH; Lee JK; Lee JY; Kang SM
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32024283
    [TBL] [Abstract][Full Text] [Related]  

  • 63. High-finesse cavities fabricated by buckling self-assembly of a-Si/SiO2 multilayers.
    Allen TW; Silverstone J; Ponnampalam N; Olsen T; Meldrum A; DeCorby RG
    Opt Express; 2011 Sep; 19(20):18903-9. PubMed ID: 21996832
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Aspect-ratio-dependent ultra-low reflection and luminescence of dry-etched Si nanopillars on Si substrate.
    Pai YH; Meng FS; Lin CJ; Kuo HC; Hsu SH; Chang YC; Lin GR
    Nanotechnology; 2009 Jan; 20(3):035303. PubMed ID: 19417292
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mid-infrared near-field spectroscopy.
    Amarie S; Ganz T; Keilmann F
    Opt Express; 2009 Nov; 17(24):21794-801. PubMed ID: 19997423
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point.
    Blanchard R; Boriskina SV; Genevet P; Kats MA; Tetienne JP; Yu N; Scully MO; Dal Negro L; Capasso F
    Opt Express; 2011 Oct; 19(22):22113-24. PubMed ID: 22109055
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy.
    Pucci O; Toronov V; St Lawrence K
    Appl Opt; 2010 Nov; 49(32):6324-32. PubMed ID: 21068864
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications.
    Leem JW; Song YM; Yu JS
    Nanoscale; 2013 Nov; 5(21):10455-60. PubMed ID: 24056915
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure.
    Liu Z; Zhan P; Chen J; Tang C; Yan Z; Chen Z; Wang Z
    Opt Express; 2013 Feb; 21(3):3021-30. PubMed ID: 23481760
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting.
    Lin H; Xiu F; Fang M; Yip S; Cheung HY; Wang F; Han N; Chan KS; Wong CY; Ho JC
    ACS Nano; 2014 Apr; 8(4):3752-60. PubMed ID: 24579981
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures.
    Song YM; Jeong Y; Yeo CI; Lee YT
    Opt Express; 2012 Nov; 20 Suppl 6():A916-23. PubMed ID: 23187668
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A Bioinspired Bilevel Metamaterial for Multispectral Manipulation toward Visible, Multi-Wavelength Detection Lasers and Mid-Infrared Selective Radiation.
    Liu X; Wang P; Xiao C; Fu L; Zhou H; Fan T; Zhang D
    Adv Mater; 2023 Oct; 35(41):e2302844. PubMed ID: 37402134
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Monolithic silicon microlens arrays for far-infrared astrophysics.
    Cothard NF; Stevenson T; Mateo J; Costen N; Denis K; Perido J; Schrock I; Wang F; Glenn J
    Appl Opt; 2024 Feb; 63(6):1481-1487. PubMed ID: 38437359
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Experimental characterization and physics-based modeling of the temperature-dependent diffuse reflectance of plasma-sprayed Nd
    Brupbacher MC; Zhang D; Buchta WM; Montalbano TJ; Caruso KS; Airola MB; Brown DM; Thomas ME; Spicer JB
    Appl Opt; 2018 Sep; 57(27):7782-7792. PubMed ID: 30462042
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Optical properties of porcine dermis in the mid-infrared absorption band of glucose.
    Schönhals A; Tholl H; Glasmacher M; Kröger-Lui N; Pucci A; Petrich W
    Analyst; 2017 Apr; 142(8):1235-1243. PubMed ID: 27918009
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nanostructured Stealth Surfaces for Visible and Near-Infrared Light.
    Diao Z; Kraus M; Brunner R; Dirks JH; Spatz JP
    Nano Lett; 2016 Oct; 16(10):6610-6616. PubMed ID: 27673379
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Polymer-coated moth-eye hybrid structure for broadband antireflection in the terahertz region.
    Yu X; Goto K; Yasunaga Y; Soeda J; Ono S
    Opt Lett; 2021 Aug; 46(15):3761-3764. PubMed ID: 34329275
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Micromachined silicon grisms for infrared optics.
    Mar DJ; Marsh JP; Deen CP; Ling H; Choo H; Jaffe DT
    Appl Opt; 2009 Feb; 48(6):1016-29. PubMed ID: 23567560
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Moth-Eye-Inspired Biophotonic Surfaces with Antireflective and Hydrophobic Characteristics.
    Kuo WK; Hsu JJ; Nien CK; Yu HH
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):32021-32030. PubMed ID: 27787981
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Antireflective glass nanoholes on optical lenses.
    Lee Y; Bae SI; Eom J; Suh HC; Jeong KH
    Opt Express; 2018 May; 26(11):14786-14791. PubMed ID: 29877414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.