BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24366124)

  • 1. Metabolism: DNA double-strand breaks and p53 activity in β-cell failure.
    Koch L
    Nat Rev Endocrinol; 2014 Mar; 10(3):126. PubMed ID: 24366124
    [No Abstract]   [Full Text] [Related]  

  • 2. Type 2 diabetes and congenital hyperinsulinism cause DNA double-strand breaks and p53 activity in β cells.
    Tornovsky-Babeay S; Dadon D; Ziv O; Tzipilevich E; Kadosh T; Schyr-Ben Haroush R; Hija A; Stolovich-Rain M; Furth-Lavi J; Granot Z; Porat S; Philipson LH; Herold KC; Bhatti TR; Stanley C; Ashcroft FM; In't Veld P; Saada A; Magnuson MA; Glaser B; Dor Y
    Cell Metab; 2014 Jan; 19(1):109-21. PubMed ID: 24332968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased double strand breaks in diabetic β-cells with a p21 response that limits apoptosis.
    Tay VSY; Devaraj S; Koh T; Ke G; Crasta KC; Ali Y
    Sci Rep; 2019 Dec; 9(1):19341. PubMed ID: 31852915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the p53 tumor suppressor in metabolism and diabetes.
    Kung CP; Murphy ME
    J Endocrinol; 2016 Nov; 231(2):R61-R75. PubMed ID: 27613337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The RNA surveillance protein SMG1 activates p53 in response to DNA double-strand breaks but not exogenously oxidized mRNA.
    Gewandter JS; Bambara RA; O'Reilly MA
    Cell Cycle; 2011 Aug; 10(15):2561-7. PubMed ID: 21701263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Role of p53 in silica-induced cell cycle alternation and DNA double-strand break repair in human embryo lung fibroblasts].
    Zhang FM; Liu BC; Liu HF; Jia XW; Ye M
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2010 Apr; 28(4):246-9. PubMed ID: 20465947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role for endogenous and radiation-induced DNA double-strand breaks in p53-dependent apoptosis during cortical neurogenesis.
    Li H; Liu N; Rajendran GK; Gernon TJ; Rockhill JK; Schwartz JL; Gu Y
    Radiat Res; 2008 May; 169(5):513-22. PubMed ID: 18439043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of L-ascorbic acid on two cycles of cisplatin-induced DNA double-strand breaks and phosphorylation of p53 in the liver.
    Narayana K
    Exp Toxicol Pathol; 2012 Jul; 64(5):495-502. PubMed ID: 21111584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Destabilization of ATP-sensitive potassium channel activity by novel KCNJ11 mutations identified in congenital hyperinsulinism.
    Lin YW; Bushman JD; Yan FF; Haidar S; MacMullen C; Ganguly A; Stanley CA; Shyng SL
    J Biol Chem; 2008 Apr; 283(14):9146-56. PubMed ID: 18250167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Too many breaks (brakes): pancreatic β-cell senescence leads to diabetes.
    Tavana O; Zhu C
    Cell Cycle; 2011 Aug; 10(15):2471-84. PubMed ID: 21750406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Congenital hyperinsulinism: Loss of B-cell self-control].
    Lebl J; Roženková K; Průhová Š
    Vnitr Lek; 2016; 62(11 Suppl 4):S72-76. PubMed ID: 27921429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ghrelin Prevents Cisplatin-Induced Testicular Damage by Facilitating Repair of DNA Double Strand Breaks Through Activation of p53 in Mice.
    Garcia JM; Chen JA; Guillory B; Donehower LA; Smith RG; Lamb DJ
    Biol Reprod; 2015 Jul; 93(1):24. PubMed ID: 26019260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperinsulinemic Hypoglycemia.
    Güemes M; Hussain K
    Pediatr Clin North Am; 2015 Aug; 62(4):1017-36. PubMed ID: 26210630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survival of pancreatic beta cells is partly controlled by a TCF7L2-p53-p53INP1-dependent pathway.
    Zhou Y; Zhang E; Berggreen C; Jing X; Osmark P; Lang S; Cilio CM; Göransson O; Groop L; Renström E; Hansson O
    Hum Mol Genet; 2012 Jan; 21(1):196-207. PubMed ID: 21965303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic β-cell function in diabetes.
    Hoshino A; Ariyoshi M; Okawa Y; Kaimoto S; Uchihashi M; Fukai K; Iwai-Kanai E; Ikeda K; Ueyama T; Ogata T; Matoba S
    Proc Natl Acad Sci U S A; 2014 Feb; 111(8):3116-21. PubMed ID: 24516131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wild-type p53-induced phosphatase 1 dephosphorylates histone variant gamma-H2AX and suppresses DNA double strand break repair.
    Moon SH; Lin L; Zhang X; Nguyen TA; Darlington Y; Waldman AS; Lu X; Donehower LA
    J Biol Chem; 2010 Apr; 285(17):12935-47. PubMed ID: 20118229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATM and P53 differentially regulate pancreatic beta cell survival in Ins1E cells.
    Uhlemeyer C; Müller N; Grieß K; Wessel C; Schlegel C; Kuboth J; Belgardt BF
    PLoS One; 2020; 15(8):e0237669. PubMed ID: 32810137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Downregulation of Fas activity rescues early onset of diabetes in c-Kit(Wv/+) mice.
    Feng ZC; Riopel M; Li J; Donnelly L; Wang R
    Am J Physiol Endocrinol Metab; 2013 Mar; 304(6):E557-65. PubMed ID: 23269409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of arf-bp1 induces p53 activation and diabetic phenotypes in mice.
    Kon N; Zhong J; Qiang L; Accili D; Gu W
    J Biol Chem; 2012 Feb; 287(7):5102-11. PubMed ID: 22187431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clioquinol induces DNA double-strand breaks, activation of ATM, and subsequent activation of p53 signaling.
    Katsuyama M; Iwata K; Ibi M; Matsuno K; Matsumoto M; Yabe-Nishimura C
    Toxicology; 2012 Sep; 299(1):55-9. PubMed ID: 22627294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.