These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 24366132)

  • 21. Ten Years of Grid Cells.
    Rowland DC; Roudi Y; Moser MB; Moser EI
    Annu Rev Neurosci; 2016 Jul; 39():19-40. PubMed ID: 27023731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Grid cells correlation structure suggests organized feedforward projections into superficial layers of the medial entorhinal cortex.
    Tocker G; Barak O; Derdikman D
    Hippocampus; 2015 Dec; 25(12):1599-613. PubMed ID: 26105192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiological Properties of Neurons in Bat Entorhinal Cortex Exhibit an Inverse Gradient along the Dorsal-Ventral Axis Compared to Entorhinal Neurons in Rat.
    Heys JG; Shay CF; MacLeod KM; Witter MP; Moss CF; Hasselmo ME
    J Neurosci; 2016 Apr; 36(16):4591-9. PubMed ID: 27098700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct recordings of grid-like neuronal activity in human spatial navigation.
    Jacobs J; Weidemann CT; Miller JF; Solway A; Burke JF; Wei XX; Suthana N; Sperling MR; Sharan AD; Fried I; Kahana MJ
    Nat Neurosci; 2013 Sep; 16(9):1188-90. PubMed ID: 23912946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Continuous Attractor Model with Realistic Neural and Synaptic Properties Quantitatively Reproduces Grid Cell Physiology.
    Sutton NM; Gutiérrez-Guzmán BE; Dannenberg H; Ascoli GA
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hebbian analysis of the transformation of medial entorhinal grid-cell inputs to hippocampal place fields.
    Savelli F; Knierim JJ
    J Neurophysiol; 2010 Jun; 103(6):3167-83. PubMed ID: 20357069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex.
    Mhatre H; Gorchetchnikov A; Grossberg S
    Hippocampus; 2012 Feb; 22(2):320-34. PubMed ID: 21136517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations.
    Grossberg S; Pilly PK
    Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20120524. PubMed ID: 24366136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of properties of medial entorhinal cortex layer II neurons in two anatomical dimensions with and without cholinergic activation.
    Yoshida M; Jochems A; Hasselmo ME
    PLoS One; 2013; 8(9):e73904. PubMed ID: 24069244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rebound spiking in layer II medial entorhinal cortex stellate cells: Possible mechanism of grid cell function.
    Shay CF; Ferrante M; Chapman GW; Hasselmo ME
    Neurobiol Learn Mem; 2016 Mar; 129():83-98. PubMed ID: 26385258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How entorhinal grid cells may learn multiple spatial scales from a dorsoventral gradient of cell response rates in a self-organizing map.
    Grossberg S; Pilly PK
    PLoS Comput Biol; 2012; 8(10):e1002648. PubMed ID: 23055909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Grid cells in rat entorhinal cortex encode physical space with independent firing fields and phase precession at the single-trial level.
    Reifenstein ET; Kempter R; Schreiber S; Stemmler MB; Herz AV
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):6301-6. PubMed ID: 22474395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. What do grid cells contribute to place cell firing?
    Bush D; Barry C; Burgess N
    Trends Neurosci; 2014 Mar; 37(3):136-45. PubMed ID: 24485517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rate maintenance and resonance in the entorhinal cortex.
    Haas JS; Kreuz T; Torcini A; Politi A; Abarbanel HD
    Eur J Neurosci; 2010 Dec; 32(11):1930-9. PubMed ID: 21044179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuning of synaptic integration in the medial entorhinal cortex to the organization of grid cell firing fields.
    Garden DL; Dodson PD; O'Donnell C; White MD; Nolan MF
    Neuron; 2008 Dec; 60(5):875-89. PubMed ID: 19081381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Untethered firing fields and intermittent silences: Why grid-cell discharge is so variable.
    Nagele J; Herz AVM; Stemmler MB
    Hippocampus; 2020 Apr; 30(4):367-383. PubMed ID: 32045073
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Specific evidence of low-dimensional continuous attractor dynamics in grid cells.
    Yoon K; Buice MA; Barry C; Hayman R; Burgess N; Fiete IR
    Nat Neurosci; 2013 Aug; 16(8):1077-84. PubMed ID: 23852111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane potential dynamics of grid cells.
    Domnisoru C; Kinkhabwala AA; Tank DW
    Nature; 2013 Mar; 495(7440):199-204. PubMed ID: 23395984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How environment geometry affects grid cell symmetry and what we can learn from it.
    Krupic J; Bauza M; Burton S; Lever C; O'Keefe J
    Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20130188. PubMed ID: 24366142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cholinergic modulation of the resonance properties of stellate cells in layer II of medial entorhinal cortex.
    Heys JG; Giocomo LM; Hasselmo ME
    J Neurophysiol; 2010 Jul; 104(1):258-70. PubMed ID: 20445030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.