These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 24366467)
1. 3D PLLA/ibuprofen composite scaffolds obtained by a supercritical fluids assisted process. Cardea S; Baldino L; Scognamiglio M; Reverchon E J Mater Sci Mater Med; 2014 Apr; 25(4):989-98. PubMed ID: 24366467 [TBL] [Abstract][Full Text] [Related]
2. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates. Hu Y; Ma S; Yang Z; Zhou W; Du Z; Huang J; Yi H; Wang C Colloids Surf B Biointerfaces; 2016 Apr; 140():382-391. PubMed ID: 26774574 [TBL] [Abstract][Full Text] [Related]
3. 3-D PLLA scaffolds formation by a supercritical freeze extraction assisted process. Cardea S; Baldino L; Pisanti P; Reverchon E J Mater Sci Mater Med; 2014 Feb; 25(2):355-62. PubMed ID: 24129832 [TBL] [Abstract][Full Text] [Related]
4. Preparation of poly(L-lactic acid) nanofiber scaffolds with a rough surface by phase inversion using supercritical carbon dioxide. Yang DZ; Chen AZ; Wang SB; Li Y; Tang XL; Wu YJ Biomed Mater; 2015 Jun; 10(3):035015. PubMed ID: 26107415 [TBL] [Abstract][Full Text] [Related]
5. FEM modeling of the reinforcement mechanism of Hydroxyapatite in PLLA scaffolds produced by supercritical drying, for Tissue Engineering applications. Baldino L; Naddeo F; Cardea S; Naddeo A; Reverchon E J Mech Behav Biomed Mater; 2015 Nov; 51():225-36. PubMed ID: 26275485 [TBL] [Abstract][Full Text] [Related]
6. Preparation, characterization, and in vitro release of ibuprofen from AI2O3/PLA/PMMA composites. Vallet-Regí M; Granado S; Arcos D; Gordo M; Cabañas MV; Ragel CV; Salinas AJ; Doadrio AL; San Román J J Biomed Mater Res; 1998 Mar; 39(3):423-8. PubMed ID: 9468051 [TBL] [Abstract][Full Text] [Related]
7. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505 [TBL] [Abstract][Full Text] [Related]
8. Mineralization and drug release of hydroxyapatite/poly(l-lactic acid) nanocomposite scaffolds prepared by Pickering emulsion templating. Hu Y; Zou S; Chen W; Tong Z; Wang C Colloids Surf B Biointerfaces; 2014 Oct; 122():559-565. PubMed ID: 25127362 [TBL] [Abstract][Full Text] [Related]
9. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Sultana N; Wang M Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. Lou T; Wang X; Song G; Gu Z; Yang Z Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519 [TBL] [Abstract][Full Text] [Related]
11. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds. Flaibani M; Elvassore N Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1632-9. PubMed ID: 24364970 [TBL] [Abstract][Full Text] [Related]
12. 3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration. Liu Y; Huang Q; Feng Q Biomed Mater; 2013 Dec; 8(6):065001. PubMed ID: 24225162 [TBL] [Abstract][Full Text] [Related]
13. Poly(L-lactic acid) nanocylinders as nanofibrous structures for macroporous gelatin scaffolds. Lee JB; Jeong SI; Bae MS; Heo DN; Heo JS; Hwang YS; Lee HW; Kwon IK J Nanosci Nanotechnol; 2011 Jul; 11(7):6371-6. PubMed ID: 22121718 [TBL] [Abstract][Full Text] [Related]
14. Thermally produced biodegradable scaffolds for cartilage tissue engineering. Lee SH; Kim BS; Kim SH; Kang SW; Kim YH Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274 [TBL] [Abstract][Full Text] [Related]
15. Tailoring the morphology of high molecular weight PLLA scaffolds through bioglass addition. Barroca N; Daniel-da-Silva AL; Vilarinho PM; Fernandes MH Acta Biomater; 2010 Sep; 6(9):3611-20. PubMed ID: 20350622 [TBL] [Abstract][Full Text] [Related]
16. The double porogen approach as a new technique for the fabrication of interconnected poly(L-lactic acid) and starch based biodegradable scaffolds. Ghosh S; Viana JC; Reis RL; Mano JF J Mater Sci Mater Med; 2007 Feb; 18(2):185-93. PubMed ID: 17323149 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and characterization of porous poly(L-lactide) scaffolds using solid-liquid phase separation. Goh YQ; Ooi CP J Mater Sci Mater Med; 2008 Jun; 19(6):2445-52. PubMed ID: 18219558 [TBL] [Abstract][Full Text] [Related]
18. Development of an Ibuprofen-releasing biodegradable PLA/PGA electrospun scaffold for tissue regeneration. Cantón I; Mckean R; Charnley M; Blackwood KA; Fiorica C; Ryan AJ; MacNeil S Biotechnol Bioeng; 2010 Feb; 105(2):396-408. PubMed ID: 19731254 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and characterization of nano composite scaffold of poly(L-lactic acid)/hydroxyapatite. Wang X; Song G; Lou T J Mater Sci Mater Med; 2010 Jan; 21(1):183-8. PubMed ID: 19705258 [TBL] [Abstract][Full Text] [Related]
20. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles. Hong Z; Reis RL; Mano JF Acta Biomater; 2008 Sep; 4(5):1297-306. PubMed ID: 18439885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]