These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24366540)

  • 41. Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries.
    Jung KN; Jung JH; Im WB; Yoon S; Shin KH; Lee JW
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9902-7. PubMed ID: 24053465
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst.
    Lim HD; Song H; Kim J; Gwon H; Bae Y; Park KY; Hong J; Kim H; Kim T; Kim YH; Lepró X; Ovalle-Robles R; Baughman RH; Kang K
    Angew Chem Int Ed Engl; 2014 Apr; 53(15):3926-31. PubMed ID: 24596170
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Urchin-like NiO-NiCo
    Zhao W; Li X; Yin R; Qian L; Huang X; Liu H; Zhang J; Wang J; Ding T; Guo Z
    Nanoscale; 2018 Dec; 11(1):50-59. PubMed ID: 30534796
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Key scientific challenges in current rechargeable non-aqueous Li-O2 batteries: experiment and theory.
    Bhatt MD; Geaney H; Nolan M; O'Dwyer C
    Phys Chem Chem Phys; 2014 Jun; 16(24):12093-130. PubMed ID: 24833409
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mesoporous silica-assisted carbon free Li2MnSiO4 cathode nanoparticles for high capacity Li rechargeable batteries.
    Kim SJ; Suk J; Yun YJ; Jung HK; Choi S
    Phys Chem Chem Phys; 2014 Feb; 16(5):2085-9. PubMed ID: 24343226
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Decoration of sulfur with porous metal nanostructures: an alternative strategy for improving the cyclability of sulfur cathode materials for advanced lithium-sulfur batteries.
    Tao X; Chen F; Xia Y; Huang H; Gan Y; Chen X; Zhang W
    Chem Commun (Camb); 2013 May; 49(40):4513-5. PubMed ID: 23575470
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li-O2 Batteries.
    Lu YC; Shao-Horn Y
    J Phys Chem Lett; 2013 Jan; 4(1):93-9. PubMed ID: 26291218
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cation Segregation of A-Site Deficiency Perovskite La
    Cong Y; Geng Z; Sun Y; Yuan L; Wang X; Zhang X; Wang L; Zhang W; Huang K; Feng S
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25465-25472. PubMed ID: 29984983
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Carbon supported TiN nanoparticles: an efficient bifunctional catalyst for non-aqueous Li-O2 batteries.
    Li F; Ohnishi R; Yamada Y; Kubota J; Domen K; Yamada A; Zhou H
    Chem Commun (Camb); 2013 Feb; 49(12):1175-7. PubMed ID: 23289098
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis of perovskite-based porous La(0.75)Sr(0.25)MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries.
    Xu JJ; Xu D; Wang ZL; Wang HG; Zhang LL; Zhang XB
    Angew Chem Int Ed Engl; 2013 Apr; 52(14):3887-90. PubMed ID: 23447093
    [No Abstract]   [Full Text] [Related]  

  • 51. Probing Mechanisms for Inverse Correlation between Rate Performance and Capacity in K-O
    Xiao N; Ren X; He M; McCulloch WD; Wu Y
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4301-4308. PubMed ID: 27408953
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reaction chemistry in rechargeable Li-O
    Lim HD; Lee B; Bae Y; Park H; Ko Y; Kim H; Kim J; Kang K
    Chem Soc Rev; 2017 May; 46(10):2873-2888. PubMed ID: 28418060
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbon-free cobalt oxide cathodes with tunable nanoarchitectures for rechargeable lithium-oxygen batteries.
    Riaz A; Jung KN; Chang W; Lee SB; Lim TH; Park SJ; Song RH; Yoon S; Shin KH; Lee JW
    Chem Commun (Camb); 2013 Jul; 49(53):5984-6. PubMed ID: 23715057
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanostructured Bimetallic Iron Molybdenum Nitride as a Non-Precious Cathode Catalyst for Li–O₂ Batteries.
    Zhang B; Zhang L; Zhang K; Dong S; Zhao J; Cui G
    J Nanosci Nanotechnol; 2017 Jan; 17(1):720-24. PubMed ID: 29633810
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrocatalytic performances of g-C3N4-LaNiO3 composite as bi-functional catalysts for lithium-oxygen batteries.
    Wu Y; Wang T; Zhang Y; Xin S; He X; Zhang D; Shui J
    Sci Rep; 2016 Apr; 6():24314. PubMed ID: 27074882
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In situ-formed Li2S in lithiated graphite electrodes for lithium-sulfur batteries.
    Fu Y; Zu C; Manthiram A
    J Am Chem Soc; 2013 Dec; 135(48):18044-7. PubMed ID: 24245559
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly hierarchical porous structures constructed from NiO nanosheets act as Li ion and O
    Wang C; Zhao Y; Liu J; Gong P; Li X; Zhao Y; Yue G; Zhou Z
    Chem Commun (Camb); 2016 Sep; 52(79):11772-11774. PubMed ID: 27709174
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rechargeable LI2O2 electrode for lithium batteries.
    Ogasawara T; Débart A; Holzapfel M; Novák P; Bruce PG
    J Am Chem Soc; 2006 Feb; 128(4):1390-3. PubMed ID: 16433559
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Toward Highly Efficient Electrocatalyst for Li-O
    Tan G; Chong L; Amine R; Lu J; Liu C; Yuan Y; Wen J; He K; Bi X; Guo Y; Wang HH; Shahbazian-Yassar R; Al Hallaj S; Miller DJ; Liu D; Amine K
    Nano Lett; 2017 May; 17(5):2959-2966. PubMed ID: 28402674
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries.
    Xu G; Ding B; Nie P; Shen L; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):194-9. PubMed ID: 24344876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.