These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 24366543)
1. Kinetic, thermodynamic, and structural characterizations of the association between Nrf2-DLGex degron and Keap1. Fukutomi T; Takagi K; Mizushima T; Ohuchi N; Yamamoto M Mol Cell Biol; 2014 Mar; 34(5):832-46. PubMed ID: 24366543 [TBL] [Abstract][Full Text] [Related]
2. Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Tong KI; Padmanabhan B; Kobayashi A; Shang C; Hirotsu Y; Yokoyama S; Yamamoto M Mol Cell Biol; 2007 Nov; 27(21):7511-21. PubMed ID: 17785452 [TBL] [Abstract][Full Text] [Related]
3. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Tong KI; Katoh Y; Kusunoki H; Itoh K; Tanaka T; Yamamoto M Mol Cell Biol; 2006 Apr; 26(8):2887-900. PubMed ID: 16581765 [TBL] [Abstract][Full Text] [Related]
4. Molecular basis for the disruption of Keap1-Nrf2 interaction via Hinge & Latch mechanism. Horie Y; Suzuki T; Inoue J; Iso T; Wells G; Moore TW; Mizushima T; Dinkova-Kostova AT; Kasai T; Kamei T; Koshiba S; Yamamoto M Commun Biol; 2021 May; 4(1):576. PubMed ID: 33990683 [TBL] [Abstract][Full Text] [Related]
5. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Shibata T; Ohta T; Tong KI; Kokubu A; Odogawa R; Tsuta K; Asamura H; Yamamoto M; Hirohashi S Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13568-73. PubMed ID: 18757741 [TBL] [Abstract][Full Text] [Related]
6. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. Jain A; Lamark T; Sjøttem E; Larsen KB; Awuh JA; Øvervatn A; McMahon M; Hayes JD; Johansen T J Biol Chem; 2010 Jul; 285(29):22576-91. PubMed ID: 20452972 [TBL] [Abstract][Full Text] [Related]
7. The Keap1-Nrf2 system as an in vivo sensor for electrophiles. Uruno A; Motohashi H Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624 [TBL] [Abstract][Full Text] [Related]
8. Mathematical modeling reveals quantitative properties of KEAP1-NRF2 signaling. Liu S; Pi J; Zhang Q Redox Biol; 2021 Nov; 47():102139. PubMed ID: 34600335 [TBL] [Abstract][Full Text] [Related]
9. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism: a two-site interaction model for the Nrf2-Keap1 complex. McMahon M; Thomas N; Itoh K; Yamamoto M; Hayes JD J Biol Chem; 2006 Aug; 281(34):24756-68. PubMed ID: 16790436 [TBL] [Abstract][Full Text] [Related]
10. Kelch-like ECH-associated protein 1 (KEAP1) differentially regulates nuclear factor erythroid-2-related factors 1 and 2 (NRF1 and NRF2). Tian W; Rojo de la Vega M; Schmidlin CJ; Ooi A; Zhang DD J Biol Chem; 2018 Feb; 293(6):2029-2040. PubMed ID: 29255090 [TBL] [Abstract][Full Text] [Related]
11. Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Padmanabhan B; Tong KI; Ohta T; Nakamura Y; Scharlock M; Ohtsuji M; Kang MI; Kobayashi A; Yokoyama S; Yamamoto M Mol Cell; 2006 Mar; 21(5):689-700. PubMed ID: 16507366 [TBL] [Abstract][Full Text] [Related]
12. Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome. Katoh Y; Iida K; Kang MI; Kobayashi A; Mizukami M; Tong KI; McMahon M; Hayes JD; Itoh K; Yamamoto M Arch Biochem Biophys; 2005 Jan; 433(2):342-50. PubMed ID: 15581590 [TBL] [Abstract][Full Text] [Related]
13. Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination. Hast BE; Goldfarb D; Mulvaney KM; Hast MA; Siesser PF; Yan F; Hayes DN; Major MB Cancer Res; 2013 Apr; 73(7):2199-210. PubMed ID: 23382044 [TBL] [Abstract][Full Text] [Related]
14. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Taguchi K; Motohashi H; Yamamoto M Genes Cells; 2011 Feb; 16(2):123-40. PubMed ID: 21251164 [TBL] [Abstract][Full Text] [Related]
15. Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. Lo SC; Li X; Henzl MT; Beamer LJ; Hannink M EMBO J; 2006 Aug; 25(15):3605-17. PubMed ID: 16888629 [TBL] [Abstract][Full Text] [Related]
16. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Tong KI; Kobayashi A; Katsuoka F; Yamamoto M Biol Chem; 2006; 387(10-11):1311-20. PubMed ID: 17081101 [TBL] [Abstract][Full Text] [Related]
17. Emerging Substrate Proteins of Kelch-like ECH Associated Protein 1 (Keap1) and Potential Challenges for the Development of Small-Molecule Inhibitors of the Keap1-Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Protein-Protein Interaction. Zhang Y; Shi Z; Zhou Y; Xiao Q; Wang H; Peng Y J Med Chem; 2020 Aug; 63(15):7986-8002. PubMed ID: 32233486 [TBL] [Abstract][Full Text] [Related]
18. Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis. Stępkowski TM; Kruszewski MK Free Radic Biol Med; 2011 May; 50(9):1186-95. PubMed ID: 21295136 [TBL] [Abstract][Full Text] [Related]
19. Critical cysteine residues of Kelch-like ECH-associated protein 1 in arsenic sensing and suppression of nuclear factor erythroid 2-related factor 2. He X; Ma Q J Pharmacol Exp Ther; 2010 Jan; 332(1):66-75. PubMed ID: 19808700 [TBL] [Abstract][Full Text] [Related]
20. Cysteine-based regulation of the CUL3 adaptor protein Keap1. Sekhar KR; Rachakonda G; Freeman ML Toxicol Appl Pharmacol; 2010 Apr; 244(1):21-6. PubMed ID: 19560482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]