BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24367094)

  • 21. Folding and stability of alpha-helical integral membrane proteins.
    Mackenzie KR
    Chem Rev; 2006 May; 106(5):1931-77. PubMed ID: 16683762
    [No Abstract]   [Full Text] [Related]  

  • 22. Interaction of a two-transmembrane-helix peptide with lipid bilayers and dodecyl sulfate micelles.
    Renthal R; Brancaleon L; Peña I; Silva F; Chen LY
    Biophys Chem; 2011 Dec; 159(2-3):321-7. PubMed ID: 21924540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability of the two-dimensional lattice of bacteriorhodopsin reconstituted in partially fluorinated phosphatidylcholine bilayers.
    Takahashi H; Yoshino M; Morita K; Takagi T; Yokoyama Y; Kikukawa T; Amii H; Kanamori T; Sonoyama M
    Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):631-642. PubMed ID: 30582916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence that bilayer bending rigidity affects membrane protein folding.
    Booth PJ; Riley ML; Flitsch SL; Templer RH; Farooq A; Curran AR; Chadborn N; Wright P
    Biochemistry; 1997 Jan; 36(1):197-203. PubMed ID: 8993334
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhomogeneous stability of bacteriorhodopsin in purple membrane against photobleaching at high temperature.
    Yokoyama Y; Sonoyama M; Mitaku S
    Proteins; 2004 Feb; 54(3):442-54. PubMed ID: 14747993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of protein-micelle ratios and cysteine residues on the kinetic stability and unfolding rates of human mitochondrial VDAC-2.
    Maurya SR; Mahalakshmi R
    PLoS One; 2014; 9(1):e87701. PubMed ID: 24494036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unfolding free energy of a two-domain transmembrane sugar transport protein.
    Findlay HE; Rutherford NG; Henderson PJ; Booth PJ
    Proc Natl Acad Sci U S A; 2010 Oct; 107(43):18451-6. PubMed ID: 20937906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light-induced denaturation of bacteriorhodopsin solubilized by octyl-beta-glucoside.
    Mukai Y; Kamo N; Mitaku S
    Protein Eng; 1999 Sep; 12(9):755-9. PubMed ID: 10506285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular dynamics simulation of the unfolding of individual bacteriorhodopsin helices in sodium dodecyl sulfate micelles.
    Krishnamani V; Lanyi JK
    Biochemistry; 2012 Feb; 51(6):1061-9. PubMed ID: 22304411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of proline on the thermostability of the active site and membrane arrangement of transmembrane proteins.
    Perálvarez-Marín A; Lórenz-Fonfría VA; Simón-Vázquez R; Gomariz M; Meseguer I; Querol E; Padrós E
    Biophys J; 2008 Nov; 95(9):4384-95. PubMed ID: 18658225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stable folding core in the folding transition state of an alpha-helical integral membrane protein.
    Curnow P; Di Bartolo ND; Moreton KM; Ajoje OO; Saggese NP; Booth PJ
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14133-8. PubMed ID: 21831834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Thermodynamic Stability of Membrane Proteins in Micelles and Lipid Bilayers Investigated with the Ferrichrom Receptor FhuA.
    Pocanschi CL; Kleinschmidt JH
    J Membr Biol; 2022 Oct; 255(4-5):485-502. PubMed ID: 35552784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LCP-Tm: an assay to measure and understand stability of membrane proteins in a membrane environment.
    Liu W; Hanson MA; Stevens RC; Cherezov V
    Biophys J; 2010 Apr; 98(8):1539-48. PubMed ID: 20409473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacteriorhodopsin thermal stability: influence of bound cations and lipids on the intrinsic protein fluorescence.
    Tuparev N; Dobrikova A; Taneva S; Lazarova T
    Z Naturforsch C J Biosci; 2000; 55(5-6):355-60. PubMed ID: 10928546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrophobic mismatch and long-range protein/lipid interactions in bacteriorhodopsin/phosphatidylcholine vesicles.
    Piknová B; Pérochon E; Tocanne JF
    Eur J Biochem; 1993 Dec; 218(2):385-96. PubMed ID: 8269927
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The essential role of specific Halobacterium halobium polar lipids in 2D-array formation of bacteriorhodopsin.
    Sternberg B; L'Hostis C; Whiteway CA; Watts A
    Biochim Biophys Acta; 1992 Jul; 1108(1):21-30. PubMed ID: 1643078
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing membrane protein unfolding with pulse proteolysis.
    Schlebach JP; Kim MS; Joh NH; Bowie JU; Park C
    J Mol Biol; 2011 Mar; 406(4):545-51. PubMed ID: 21192947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pulling single bacteriorhodopsin out of a membrane: Comparison of simulation and experiment.
    Cieplak M; Filipek S; Janovjak H; Krzyśko KA
    Biochim Biophys Acta; 2006 Apr; 1758(4):537-44. PubMed ID: 16678120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unravelling the folding of bacteriorhodopsin.
    Booth PJ
    Biochim Biophys Acta; 2000 Aug; 1460(1):4-14. PubMed ID: 10984586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intermediates in the folding of the membrane protein bacteriorhodopsin.
    Booth PJ; Flitsch SL; Stern LJ; Greenhalgh DA; Kim PS; Khorana HG
    Nat Struct Biol; 1995 Feb; 2(2):139-43. PubMed ID: 7749918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.