These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 2436717)

  • 1. The use of rhodamine-B-isothiocyanate (RITC) as an anterograde and retrograde tracer in the adult rat visual system.
    Thanos S; Vidal-Sanz M; Aguayo AJ
    Brain Res; 1987 Mar; 406(1-2):317-21. PubMed ID: 2436717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrograde transneuronal transport of the fluorescent dye rhodamine beta-isothiocyanate from the primary and centrifugal visual systems in the pigeon.
    Miceli D; Repérant J; Marchand L; Rio JP
    Brain Res; 1993 Jan; 601(1-2):289-98. PubMed ID: 7679309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations on the development and topographic order of retinotectal axons: anterograde and retrograde staining of axons and perikarya with rhodamine in vivo.
    Thanos S; Bonhoeffer F
    J Comp Neurol; 1983 Oct; 219(4):420-30. PubMed ID: 6643714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-stem afferents upon retinal projecting isthmo-optic and ectopic neurons of the pigeon centrifugal visual system demonstrated by retrograde transneuronal transport of rhodamine beta-isothiocyanate.
    Miceli D; Repérant J; Bavikati R; Rio JP; Volle M
    Vis Neurosci; 1997; 14(2):213-24. PubMed ID: 9147474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basic fibroblast growth factor: receptor-mediated internalization, metabolism, and anterograde axonal transport in retinal ganglion cells.
    Ferguson IA; Schweitzer JB; Johnson EM
    J Neurosci; 1990 Jul; 10(7):2176-89. PubMed ID: 1695944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat.
    Vidal-Sanz M; Bray GM; Villegas-Pérez MP; Thanos S; Aguayo AJ
    J Neurosci; 1987 Sep; 7(9):2894-909. PubMed ID: 3625278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographic organization of the retinocollicular projection in the neonatal rat.
    Yhip JP; Kirby MA
    Vis Neurosci; 1990 Apr; 4(4):313-29. PubMed ID: 2271447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the transient ipsilateral retinotectal projection in the chick embryo: a numerical fluorescence-microscopic analysis.
    Thanos S; Bonhoeffer F
    J Comp Neurol; 1984 Apr; 224(3):407-14. PubMed ID: 6715587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elimination of ipsilateral retinotectal projections in mono-ophthalmic chick embryos.
    Thanos S; Fujisawa H; Bonhoeffer F
    Neurosci Lett; 1984 Feb; 44(2):143-8. PubMed ID: 6709229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcellular retrograde labeling of radial glial cells with WGA-HRP and DiI in neonatal rat and hamster.
    Kageyama GH; Robertson RT
    Glia; 1993 Sep; 9(1):70-81. PubMed ID: 7503953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of retinal ganglion cells projecting into the nucleus of the optic tract in rat.
    Urushibata T; Kato I; Okada T; Takeyama I
    Adv Otorhinolaryngol; 1988; 41():95-7. PubMed ID: 3213715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monkey retinal ganglion cells: morphometric analysis and tracing of axonal projections, with a consideration of the peroxidase technique.
    Bunt AH; Hendrickson AE; Lund JS; Lund RD; Fuchs AF
    J Comp Neurol; 1975 Dec; 164(3):265-85. PubMed ID: 810500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in the morphology of ganglion cell dendrites in the adult rat retina after optic nerve transection and grafting of peripheral nerve segments.
    Thanos S
    Cell Tissue Res; 1988; 254(3):599-609. PubMed ID: 3266099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of ganglion cells in the pigeon retina labeled via retrograde transneuronal transport of the fluorescent dye rhodamine beta-isothiocyanate from the telencephalic visual Wulst.
    Miceli D; Repérant J; Medina M; Volle M; Rio JP
    Brain Res; 2006 Jul; 1098(1):94-105. PubMed ID: 16765920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The visual system of the Florida garfish, Lepisosteus platyrhincus (Ginglymodi). IV. Bilateral projections and the binocular visual field.
    Collin SP; Northcutt RG
    Brain Behav Evol; 1995; 45(1):34-53. PubMed ID: 7866770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity in the developing chick visual system: topography and maintenance of experimentally induced ipsilateral projections.
    Thanos S; Dütting D
    J Comp Neurol; 1988 Dec; 278(2):303-11. PubMed ID: 3230167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target dependence of chick retinal ganglion cells during embryogenesis: cell survival and dendritic development.
    Vanselow J; Dütting D; Thanos S
    J Comp Neurol; 1990 May; 295(2):235-47. PubMed ID: 2358515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct retinal projections to the hypothalamus, piriform cortex, and accessory optic nuclei in the golden hamster as demonstrated by a sensitive anterograde horseradish peroxidase technique.
    Pickard GE; Silverman AJ
    J Comp Neurol; 1981 Feb; 196(1):155-72. PubMed ID: 7204664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendritic morphologies of retinal ganglion cells projecting to the nucleus of the optic tract in the rabbit.
    Pu ML; Amthor FR
    J Comp Neurol; 1990 Dec; 302(3):657-74. PubMed ID: 1702123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limited topographic specificity in the targeting and branching of mammalian retinal axons.
    Simon DK; O'Leary DD
    Dev Biol; 1990 Jan; 137(1):125-34. PubMed ID: 1688537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.