These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 24367294)
1. Delivery of continuously-varying stimuli using channelrhodopsin-2. Tchumatchenko T; Newman JP; Fong MF; Potter SM Front Neural Circuits; 2013; 7():184. PubMed ID: 24367294 [TBL] [Abstract][Full Text] [Related]
2. Stimulation of medial amygdala GABA neurons with kinetically different channelrhodopsins yields opposite behavioral outcomes. Baleisyte A; Schneggenburger R; Kochubey O Cell Rep; 2022 May; 39(8):110850. PubMed ID: 35613578 [TBL] [Abstract][Full Text] [Related]
3. Achieving high-frequency optical control of synaptic transmission. Jackman SL; Beneduce BM; Drew IR; Regehr WG J Neurosci; 2014 May; 34(22):7704-14. PubMed ID: 24872574 [TBL] [Abstract][Full Text] [Related]
4. Properties of an optogenetic model for olfactory stimulation. Genovese F; Thews M; Möhrlen F; Frings S J Physiol; 2016 Jul; 594(13):3501-16. PubMed ID: 26857095 [TBL] [Abstract][Full Text] [Related]
5. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Zhao S; Ting JT; Atallah HE; Qiu L; Tan J; Gloss B; Augustine GJ; Deisseroth K; Luo M; Graybiel AM; Feng G Nat Methods; 2011 Sep; 8(9):745-52. PubMed ID: 21985008 [TBL] [Abstract][Full Text] [Related]
6. Optogenetic approaches to characterize the long-range synaptic pathways from the hypothalamus to brain stem autonomic nuclei. Piñol RA; Bateman R; Mendelowitz D J Neurosci Methods; 2012 Sep; 210(2):238-46. PubMed ID: 22890236 [TBL] [Abstract][Full Text] [Related]
7. Co-expressing fast channelrhodopsin with step-function opsin overcomes spike failure due to photocurrent desensitization in optogenetics: a theoretical study. Bansal H; Pyari G; Roy S J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35320791 [No Abstract] [Full Text] [Related]
8. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathways. Darrow KN; Slama MC; Kozin ED; Owoc M; Hancock K; Kempfle J; Edge A; Lacour S; Boyden E; Polley D; Brown MC; Lee DJ Brain Res; 2015 Mar; 1599():44-56. PubMed ID: 25481416 [TBL] [Abstract][Full Text] [Related]
9. Optogenetic identification of striatal projection neuron subtypes during in vivo recordings. Kravitz AV; Owen SF; Kreitzer AC Brain Res; 2013 May; 1511():21-32. PubMed ID: 23178332 [TBL] [Abstract][Full Text] [Related]
10. Optogenetic analysis of neuronal excitability during global ischemia reveals selective deficits in sensory processing following reperfusion in mouse cortex. Chen S; Mohajerani MH; Xie Y; Murphy TH J Neurosci; 2012 Sep; 32(39):13510-9. PubMed ID: 23015440 [TBL] [Abstract][Full Text] [Related]
12. Use of channelrhodopsin for activation of CNS neurons. Britt JP; McDevitt RA; Bonci A Curr Protoc Neurosci; 2012; Chapter 2():Unit2.16. PubMed ID: 23042500 [TBL] [Abstract][Full Text] [Related]
13. Studying Neuronal Function Ex Vivo Using Optogenetic Stimulation and Patch Clamp. Aksoy-Aksel A; Genty J; Zeller M; Ehrlich I Methods Mol Biol; 2020; 2173():1-20. PubMed ID: 32651907 [TBL] [Abstract][Full Text] [Related]
14. Next-generation transgenic mice for optogenetic analysis of neural circuits. Asrican B; Augustine GJ; Berglund K; Chen S; Chow N; Deisseroth K; Feng G; Gloss B; Hira R; Hoffmann C; Kasai H; Katarya M; Kim J; Kudolo J; Lee LM; Lo SQ; Mancuso J; Matsuzaki M; Nakajima R; Qiu L; Tan G; Tang Y; Ting JT; Tsuda S; Wen L; Zhang X; Zhao S Front Neural Circuits; 2013; 7():160. PubMed ID: 24324405 [TBL] [Abstract][Full Text] [Related]
15. Maintenance of optogenetic channel rhodopsin (ChR2) function in aging mice: Implications for pharmacological studies of inhibitory synaptic transmission, quantal content, and calcium homeostasis. DuBois DW; Murchison DA; Mahnke AH; Bang E; Winzer-Serhan U; Griffith WH; Souza KA Neuropharmacology; 2023 Nov; 238():109651. PubMed ID: 37414332 [TBL] [Abstract][Full Text] [Related]
16. Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expression driven by the synapsin-1 and calcium-calmodulin kinase II promoters. Lee SY; George JH; Nagel DA; Ye H; Kueberuwa G; Seymour LW J Tissue Eng Regen Med; 2019 Mar; 13(3):369-384. PubMed ID: 30550638 [TBL] [Abstract][Full Text] [Related]
17. Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model. Williams JC; Xu J; Lu Z; Klimas A; Chen X; Ambrosi CM; Cohen IS; Entcheva E PLoS Comput Biol; 2013; 9(9):e1003220. PubMed ID: 24068903 [TBL] [Abstract][Full Text] [Related]
18. Channelrhodopsin-2-expressed dorsal root ganglion neurons activates calcium channel currents and increases action potential in spinal cord. Zhang Y; Yue J; Ai M; Ji Z; Liu Z; Cao X; Li L Spine (Phila Pa 1976); 2014 Jul; 39(15):E865-9. PubMed ID: 25171072 [TBL] [Abstract][Full Text] [Related]
19. Optogenetic entrainment of neural oscillations with hybrid fiber probes. Kilias A; Canales A; Froriep UP; Park S; Egert U; Anikeeva P J Neural Eng; 2018 Oct; 15(5):056006. PubMed ID: 29923505 [TBL] [Abstract][Full Text] [Related]