These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 24367738)
1. Influence of particle size and fluorination ratio of CF x precursor compounds on the electrochemical performance of C-FeF2 nanocomposites for reversible lithium storage. Breitung B; Reddy MA; Chakravadhanula VS; Engel M; Kübel C; Powell AK; Hahn H; Fichtner M Beilstein J Nanotechnol; 2013; 4():705-13. PubMed ID: 24367738 [TBL] [Abstract][Full Text] [Related]
2. Facile synthesis of C-FeF Reddy MA; Breitung B; Kiran Chakravadhanula VS; Helen M; Witte R; Rongeat C; Kübel C; Hahn H; Fichtner M RSC Adv; 2018 Oct; 8(64):36802-36811. PubMed ID: 35558933 [TBL] [Abstract][Full Text] [Related]
3. Enabling Long Cycle Life and High Rate Iron Difluoride Based Lithium Batteries by In Situ Cathode Surface Modification. Su Y; Chen J; Li H; Sun H; Yang T; Liu Q; Ichikawa S; Zhang X; Zhu D; Zhao J; Geng L; Guo B; Du C; Dai Q; Wang Z; Li X; Ye H; Guo Y; Li Y; Yao J; Yan J; Luo Y; Qiu H; Tang Y; Zhang L; Huang Q; Huang J Adv Sci (Weinh); 2022 Jul; 9(21):e2201419. PubMed ID: 35567353 [TBL] [Abstract][Full Text] [Related]
5. Effect of carbon source on the morphology and electrochemical performances of LiFePO4/C nanocomposites. Liu S; Wang H; Yin H; Wang H; He J J Nanosci Nanotechnol; 2014 Mar; 14(3):2408-13. PubMed ID: 24745239 [TBL] [Abstract][Full Text] [Related]
6. LiV₃O₈/Polytriphenylamine Composites with Enhanced Electrochemical Performances as Cathode Materials for Rechargeable Lithium Batteries. Li W; Zhu L; Yu Z; Xie L; Cao X Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772705 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical Performance of FeSb₂-P@C Composites as Anode Materials for Lithium-Ion Storage. Mun YS; Kim D; Kim IT J Nanosci Nanotechnol; 2018 Feb; 18(2):1343-1346. PubMed ID: 29448588 [TBL] [Abstract][Full Text] [Related]
8. Revisiting Conversion Reaction Mechanisms in Lithium Batteries: Lithiation-Driven Topotactic Transformation in FeF Karki K; Wu L; Ma Y; Armstrong MJ; Holmes JD; Garofalini SH; Zhu Y; Stach EA; Wang F J Am Chem Soc; 2018 Dec; 140(51):17915-17922. PubMed ID: 30456949 [TBL] [Abstract][Full Text] [Related]
9. Copper Nanoparticle-Incorporated Carbon Fibers as Free-Standing Anodes for Lithium-Ion Batteries. Han P; Yuan T; Yao L; Han Z; Yang J; Zheng S Nanoscale Res Lett; 2016 Dec; 11(1):172. PubMed ID: 27033848 [TBL] [Abstract][Full Text] [Related]
10. One-pot pyro synthesis of a nanosized-LiMn Jo J; Nam S; Han S; Mathew V; Alfaruqi MH; Pham DT; Kim S; Park S; Park S; Kim J RSC Adv; 2019 Aug; 9(42):24030-24038. PubMed ID: 35527880 [TBL] [Abstract][Full Text] [Related]
11. Development of Fluoride-Ion Primary Batteries: The Electrochemical Defluorination of CF Robinson LE; Wang J; Asare H; Andrews JL; Tripathi B; Katiyar R; Melot BC; Messinger RJ; Jones SC; West WC J Phys Chem C Nanomater Interfaces; 2024 Aug; 128(34):14195-14205. PubMed ID: 39238900 [TBL] [Abstract][Full Text] [Related]
12. Alternative lithium-ion battery using biomass-derived carbons as environmentally sustainable anode. Hernández-Rentero C; Marangon V; Olivares-Marín M; Gómez-Serrano V; Caballero Á; Morales J; Hassoun J J Colloid Interface Sci; 2020 Aug; 573():396-408. PubMed ID: 32304949 [TBL] [Abstract][Full Text] [Related]
13. Size and Composition Effects in Sb-Carbon Nanocomposites for Sodium-Ion Batteries. Ramireddy T; Sharma N; Xing T; Chen Y; Leforestier J; Glushenkov AM ACS Appl Mater Interfaces; 2016 Nov; 8(44):30152-30164. PubMed ID: 27753471 [TBL] [Abstract][Full Text] [Related]
14. Carbon-nanotube-encapsulated FeF₂ nanorods for high-performance lithium-ion cathode materials. Zhou J; Zhang D; Zhang X; Song H; Chen X ACS Appl Mater Interfaces; 2014 Dec; 6(23):21223-9. PubMed ID: 25399691 [TBL] [Abstract][Full Text] [Related]
15. Polyaniline-intercalated layered vanadium oxide nanocomposites--one-pot hydrothermal synthesis and application in lithium battery. Chen Y; Yang G; Zhang Z; Yang X; Hou W; Zhu JJ Nanoscale; 2010 Oct; 2(10):2131-8. PubMed ID: 20835437 [TBL] [Abstract][Full Text] [Related]
16. Mechanical ball-milling preparation of fullerene/cobalt core/shell nanocomposites with high electrochemical hydrogen storage ability. Bao D; Gao P; Shen X; Chang C; Wang L; Wang Y; Chen Y; Zhou X; Sun S; Li G; Yang P ACS Appl Mater Interfaces; 2014 Feb; 6(4):2902-9. PubMed ID: 24498904 [TBL] [Abstract][Full Text] [Related]
17. High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism. Li L; Meng F; Jin S Nano Lett; 2012 Nov; 12(11):6030-7. PubMed ID: 23106167 [TBL] [Abstract][Full Text] [Related]
18. Self-Assembled Framework Formed During Lithiation of SnS Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057 [TBL] [Abstract][Full Text] [Related]
19. One-Pot Synthesis of Copper Sulfide Nanowires/Reduced Graphene Oxide Nanocomposites with Excellent Lithium-Storage Properties as Anode Materials for Lithium-Ion Batteries. Feng C; Zhang L; Yang M; Song X; Zhao H; Jia Z; Sun K; Liu G ACS Appl Mater Interfaces; 2015 Jul; 7(29):15726-34. PubMed ID: 26135049 [TBL] [Abstract][Full Text] [Related]
20. Nanocrystalline TiO Zukalová M; Vinarčíková M; Bouša M; Kavan L Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33672643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]