These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24367924)

  • 41. Facile synthesis of Cu and Cu@Cu-Ni nanocubes and nanowires in hydrophobic solution in the presence of nickel and chloride ions.
    Guo H; Chen Y; Ping H; Jin J; Peng DL
    Nanoscale; 2013 Mar; 5(6):2394-402. PubMed ID: 23400550
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis and characterization of cadmium telluride nanowire.
    Kum MC; Yoo BY; Rheem YW; Bozhilov KN; Chen W; Mulchandani A; Myung NV
    Nanotechnology; 2008 Aug; 19(32):325711. PubMed ID: 21828833
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hollow CuO nanospheres uniformly anchored on porous Si nanowires: preparation and their potential use as electrochemical sensors.
    Guo Z; Seol ML; Kim MS; Ahn JH; Choi YK; Liu JH; Huang XJ
    Nanoscale; 2012 Dec; 4(23):7525-31. PubMed ID: 23099737
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The synthesis of twinned silicon carbide nanowires by a catalyst-free pyrolytic deposition technique.
    Li J; Zhu X; Ding P; Chen Y
    Nanotechnology; 2009 Apr; 20(14):145602. PubMed ID: 19420530
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Flexographic printing-assisted fabrication of ZnO nanowire devices.
    Lloyd JS; Fung CM; Deganello D; Wang RJ; Maffeis TG; Lau SP; Teng KS
    Nanotechnology; 2013 May; 24(19):195602. PubMed ID: 23579099
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fivefold twinned boron carbide nanowires.
    Fu X; Jiang J; Liu C; Yuan J
    Nanotechnology; 2009 Sep; 20(36):365707. PubMed ID: 19687534
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unconventional zigzag indium phosphide single-crystalline and twinned nanowires.
    Shen G; Bando Y; Liu B; Tang C; Golberg D
    J Phys Chem B; 2006 Oct; 110(41):20129-32. PubMed ID: 17034187
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lattice-mismatch-induced twinning for seeded growth of anisotropic nanostructures.
    Wang Z; Chen Z; Zhang H; Zhang Z; Wu H; Jin M; Wu C; Yang D; Yin Y
    ACS Nano; 2015 Mar; 9(3):3307-13. PubMed ID: 25744113
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigation of initial growth of ZnO nanowires and their growth mechanism.
    Jeong JS; Lee JY
    Nanotechnology; 2010 Nov; 21(47):475603. PubMed ID: 21030769
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Self-organized Ce(1-x)Gd(x)O(2-y) nanowire networks with very fast coarsening driven by attractive elastic interactions.
    Gibert M; Abellán P; Benedetti A; Puig T; Sandiumenge F; García A; Obradors X
    Small; 2010 Dec; 6(23):2716-24. PubMed ID: 21064087
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Silicon nanowire oxidation: the influence of sidewall structure and gold distribution.
    Sivakov VA; Scholz R; Syrowatka F; Falk F; Gösele U; Christiansen SH
    Nanotechnology; 2009 Oct; 20(40):405607. PubMed ID: 19738306
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Silver nanowire layer-by-layer films as substrates for surface-enhanced Raman scattering.
    Aroca RF; Goulet PJ; dos Santos DS; Alvarez-Puebla RA; Oliveira ON
    Anal Chem; 2005 Jan; 77(2):378-82. PubMed ID: 15649031
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of Citrate-Coated Penta-twinned Palladium Nanorods and Ultrathin Nanowires with a Tunable Aspect Ratio.
    Mastronardi V; Udayan G; Cibecchini G; Brescia R; Fichthorn KA; Pompa PP; Moglianetti M
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49935-49944. PubMed ID: 33090789
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Soluble InP and GaP nanowires: self-seeded, solution-liquid-solid synthesis and electrical properties.
    Liu Z; Sun K; Jian WB; Xu D; Lin YF; Fang J
    Chemistry; 2009; 15(18):4546-52. PubMed ID: 19343761
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires.
    Narayanan S; Cheng G; Zeng Z; Zhu Y; Zhu T
    Nano Lett; 2015 Jun; 15(6):4037-44. PubMed ID: 25965858
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct synthesis of ZnO nanowire arrays on Zn foil by a simple thermal evaporation process.
    Ghoshal T; Biswas S; Kar S; Dev A; Chakrabarti S; Chaudhuri S
    Nanotechnology; 2008 Feb; 19(6):065606. PubMed ID: 21730704
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis and characterization of indium-doped ZnO nanowires with periodical single-twin structures.
    Xu L; Su Y; Chen Y; Xiao H; Zhu LA; Zhou Q; Li S
    J Phys Chem B; 2006 Apr; 110(13):6637-42. PubMed ID: 16570966
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays.
    Yang X; Zhong H; Zhu Y; Shen J; Li C
    Dalton Trans; 2013 Oct; 42(39):14324-30. PubMed ID: 23963100
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering.
    Chen M; Phang IY; Lee MR; Yang JK; Ling XY
    Langmuir; 2013 Jun; 29(23):7061-9. PubMed ID: 23706081
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Amylose-directed synthesis of CuS composite nanowires and microspheres.
    Li Y; Hu J; Liu G; Zhang G; Zou H; Shi J
    Carbohydr Polym; 2013 Jan; 92(1):555-63. PubMed ID: 23218335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.