These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 24367969)
1. Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage. Kondash AJ; Warner NR; Lahav O; Vengosh A Environ Sci Technol; 2014 Jan; 48(2):1334-42. PubMed ID: 24367969 [TBL] [Abstract][Full Text] [Related]
2. Maximum Removal Efficiency of Barium, Strontium, Radium, and Sulfate with Optimum AMD-Marcellus Flowback Mixing Ratios for Beneficial Use in the Northern Appalachian Basin. McDevitt B; Cavazza M; Beam R; Cavazza E; Burgos WD; Li L; Warner NR Environ Sci Technol; 2020 Apr; 54(8):4829-4839. PubMed ID: 32250106 [TBL] [Abstract][Full Text] [Related]
3. Co-treatment of abandoned mine drainage and Marcellus Shale flowback water for use in hydraulic fracturing. He C; Zhang T; Vidic RD Water Res; 2016 Nov; 104():425-431. PubMed ID: 27579871 [TBL] [Abstract][Full Text] [Related]
4. Co-precipitation of radium with barium and strontium sulfate and its impact on the fate of radium during treatment of produced water from unconventional gas extraction. Zhang T; Gregory K; Hammack RW; Vidic RD Environ Sci Technol; 2014 Apr; 48(8):4596-603. PubMed ID: 24670034 [TBL] [Abstract][Full Text] [Related]
5. Radium in hydraulic fracturing wastewater: distribution in suspended solids and implications to its treatment by sulfate co-precipitation. Ouyang B; Renock DJ; Ajemigbitse MA; Van Sice K; Warner NR; Landis JD; Feng X Environ Sci Process Impacts; 2019 Feb; 21(2):339-351. PubMed ID: 30516236 [TBL] [Abstract][Full Text] [Related]
6. New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations. Warner NR; Darrah TH; Jackson RB; Millot R; Kloppmann W; Vengosh A Environ Sci Technol; 2014 Nov; 48(21):12552-60. PubMed ID: 25327769 [TBL] [Abstract][Full Text] [Related]
7. Fate of Radium in Marcellus Shale Flowback Water Impoundments and Assessment of Associated Health Risks. Zhang T; Hammack RW; Vidic RD Environ Sci Technol; 2015 Aug; 49(15):9347-54. PubMed ID: 26154523 [TBL] [Abstract][Full Text] [Related]
8. Sulfate precipitation in produced water from Marcellus Shale for the control of naturally occurring radioactive material. Gusa AV; Tomani A; Zhang Z; Vidic RD Water Res; 2020 Jun; 177():115765. PubMed ID: 32278993 [TBL] [Abstract][Full Text] [Related]
9. Impacts of shale gas wastewater disposal on water quality in western Pennsylvania. Warner NR; Christie CA; Jackson RB; Vengosh A Environ Sci Technol; 2013 Oct; 47(20):11849-57. PubMed ID: 24087919 [TBL] [Abstract][Full Text] [Related]
10. Understanding the Radioactive Ingrowth and Decay of Naturally Occurring Radioactive Materials in the Environment: An Analysis of Produced Fluids from the Marcellus Shale. Nelson AW; Eitrheim ES; Knight AW; May D; Mehrhoff MA; Shannon R; Litman R; Burnett WC; Forbes TZ; Schultz MK Environ Health Perspect; 2015 Jul; 123(7):689-96. PubMed ID: 25831257 [TBL] [Abstract][Full Text] [Related]
11. Evolution of water chemistry during Marcellus Shale gas development: A case study in West Virginia. Ziemkiewicz PF; Thomas He Y Chemosphere; 2015 Sep; 134():224-31. PubMed ID: 25957035 [TBL] [Abstract][Full Text] [Related]
12. Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. Warner NR; Jackson RB; Darrah TH; Osborn SG; Down A; Zhao K; White A; Vengosh A Proc Natl Acad Sci U S A; 2012 Jul; 109(30):11961-6. PubMed ID: 22778445 [TBL] [Abstract][Full Text] [Related]
13. Partitioning of naturally-occurring radionuclides (NORM) in Marcellus Shale produced fluids influenced by chemical matrix. Nelson AW; Johns AJ; Eitrheim ES; Knight AW; Basile M; Bettis EA; Schultz MK; Forbes TZ Environ Sci Process Impacts; 2016 Apr; 18(4):456-63. PubMed ID: 26952871 [TBL] [Abstract][Full Text] [Related]
14. Analysis of radium-226 in high salinity wastewater from unconventional gas extraction by inductively coupled plasma-mass spectrometry. Zhang T; Bain D; Hammack R; Vidic RD Environ Sci Technol; 2015 Mar; 49(5):2969-76. PubMed ID: 25642997 [TBL] [Abstract][Full Text] [Related]
15. Geochemical and strontium isotope characterization of produced waters from Marcellus Shale natural gas extraction. Chapman EC; Capo RC; Stewart BW; Kirby CS; Hammack RW; Schroeder KT; Edenborn HM Environ Sci Technol; 2012 Mar; 46(6):3545-53. PubMed ID: 22360406 [TBL] [Abstract][Full Text] [Related]
16. Origin of Flowback and Produced Waters from Sichuan Basin, China. Ni Y; Zou C; Cui H; Li J; Lauer NE; Harkness JS; Kondash AJ; Coyte RM; Dwyer GS; Liu D; Dong D; Liao F; Vengosh A Environ Sci Technol; 2018 Dec; 52(24):14519-14527. PubMed ID: 30419747 [TBL] [Abstract][Full Text] [Related]
17. Effect of maturity and mineralogy on fluid-rock reactions in the Marcellus Shale. Pilewski J; Sharma S; Agrawal V; Hakala JA; Stuckman MY Environ Sci Process Impacts; 2019 May; 21(5):845-855. PubMed ID: 30840020 [TBL] [Abstract][Full Text] [Related]
18. Removal of metal from acid mine drainage using a hybrid system including a pipes inserted microalgae reactor. Park YT; Lee H; Yun HS; Song KG; Yeom SH; Choi J Bioresour Technol; 2013 Dec; 150():242-8. PubMed ID: 24177157 [TBL] [Abstract][Full Text] [Related]
19. Current perspectives on unconventional shale gas extraction in the Appalachian Basin. Lampe DJ; Stolz JF J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(5):434-46. PubMed ID: 25734820 [TBL] [Abstract][Full Text] [Related]
20. Investigation into the use of cement kiln dust in high density sludge (HDS) treatment of acid mine water. Mackie AL; Walsh ME Water Res; 2015 Nov; 85():443-50. PubMed ID: 26372742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]