BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 24368083)

  • 1. Proton-coupled electron transfer and adduct configuration are important for C4a-hydroperoxyflavin formation and stabilization in a flavoenzyme.
    Wongnate T; Surawatanawong P; Visitsatthawong S; Sucharitakul J; Scrutton NS; Chaiyen P
    J Am Chem Soc; 2014 Jan; 136(1):241-53. PubMed ID: 24368083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of Oxygen Activation in a Flavin-Dependent Monooxygenase: A Nearly Barrierless Formation of C4a-Hydroperoxyflavin via Proton-Coupled Electron Transfer.
    Visitsatthawong S; Chenprakhon P; Chaiyen P; Surawatanawong P
    J Am Chem Soc; 2015 Jul; 137(29):9363-74. PubMed ID: 26144862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen peroxide elimination from C4a-hydroperoxyflavin in a flavoprotein oxidase occurs through a single proton transfer from flavin N5 to a peroxide leaving group.
    Sucharitakul J; Wongnate T; Chaiyen P
    J Biol Chem; 2011 May; 286(19):16900-9. PubMed ID: 21454569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic isotope effects on the noncovalent flavin mutant protein of pyranose 2-oxidase reveal insights into the flavin reduction mechanism.
    Sucharitakul J; Wongnate T; Chaiyen P
    Biochemistry; 2010 May; 49(17):3753-65. PubMed ID: 20359206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C4a-hydroperoxyflavin formation in N-hydroxylating flavin monooxygenases is mediated by the 2'-OH of the nicotinamide ribose of NADP⁺.
    Robinson R; Badieyan S; Sobrado P
    Biochemistry; 2013 Dec; 52(51):9089-91. PubMed ID: 24321106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a catalytic base for sugar oxidation in the pyranose 2-oxidase reaction.
    Wongnate T; Sucharitakul J; Chaiyen P
    Chembiochem; 2011 Nov; 12(17):2577-86. PubMed ID: 22012709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation mode of pyranose 2-oxidase is controlled by pH.
    Prongjit M; Sucharitakul J; Palfey BA; Chaiyen P
    Biochemistry; 2013 Feb; 52(8):1437-45. PubMed ID: 23356577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A conserved active-site threonine is important for both sugar and flavin oxidations of pyranose 2-oxidase.
    Pitsawong W; Sucharitakul J; Prongjit M; Tan TC; Spadiut O; Haltrich D; Divne C; Chaiyen P
    J Biol Chem; 2010 Mar; 285(13):9697-9705. PubMed ID: 20089849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of a C4a-hydroperoxyflavin intermediate in the reaction of a flavoprotein oxidase.
    Sucharitakul J; Prongjit M; Haltrich D; Chaiyen P
    Biochemistry; 2008 Aug; 47(33):8485-90. PubMed ID: 18652479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Mechanism of Sugar C-H Bond Oxidation by a Flavoprotein Oxidase Occurs by a Hydride Transfer Before Proton Abstraction.
    Wongnate T; Surawatanawong P; Chuaboon L; Lawan N; Chaiyen P
    Chemistry; 2019 Mar; 25(17):4460-4471. PubMed ID: 30690815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of C4a-hydroperoxyflavin protonation in the oxygenase component of p-hydroxyphenylacetate-3-hydroxylase.
    Chenprakhon P; Trisrivirat D; Thotsaporn K; Sucharitakul J; Chaiyen P
    Biochemistry; 2014 Jul; 53(25):4084-6. PubMed ID: 24878148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nature of oxygen activation in glucose oxidase from Aspergillus niger: the importance of electrostatic stabilization in superoxide formation.
    Su Q; Klinman JP
    Biochemistry; 1999 Jun; 38(26):8572-81. PubMed ID: 10387105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutral versus charged species in enzyme catalysis. Classical and free energy barriers for oxygen atom transfer from C4a-hydroperoxyflavin to dimethyl sulfide.
    Canepa C; Bach RD; Dmitrenko O
    J Org Chem; 2002 Nov; 67(24):8653-61. PubMed ID: 12444653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined quantum mechanical and molecular mechanical simulations of one- and two-electron reduction potentials of flavin cofactor in water, medium-chain acyl-CoA dehydrogenase, and cholesterol oxidase.
    Bhattacharyya S; Stankovich MT; Truhlar DG; Gao J
    J Phys Chem A; 2007 Jul; 111(26):5729-42. PubMed ID: 17567113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic mechanism of pyranose 2-oxidase from trametes multicolor.
    Prongjit M; Sucharitakul J; Wongnate T; Haltrich D; Chaiyen P
    Biochemistry; 2009 May; 48(19):4170-80. PubMed ID: 19317444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.
    Wongnate T; Chaiyen P
    FEBS J; 2013 Jul; 280(13):3009-27. PubMed ID: 23578136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic aspects regarding the elimination of H2O2 from C(4a)-hydroperoxyflavin. The role of a proton shuttle required for H2O2 elimination.
    Bach RD; Mattevi A
    J Org Chem; 2013 Sep; 78(17):8585-93. PubMed ID: 23895334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of C4a-hydroperoxyflavin in a two-component flavin-dependent monooxygenase is achieved through interactions at flavin N5 and C4a atoms.
    Thotsaporn K; Chenprakhon P; Sucharitakul J; Mattevi A; Chaiyen P
    J Biol Chem; 2011 Aug; 286(32):28170-80. PubMed ID: 21680741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles molecular dynamics investigation of the D-amino acid oxidative half-reaction catalyzed by the flavoenzyme D-amino acid oxidase.
    Tilocca A; Gamba A; Vanoni MA; Fois E
    Biochemistry; 2002 Dec; 41(48):14111-21. PubMed ID: 12450374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.