BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24368195)

  • 1. Distributions and concentrations of thallium in surface waters of a region impacted by historical metal mining (Cornwall, UK).
    Tatsi K; Turner A
    Sci Total Environ; 2014 Mar; 473-474():139-46. PubMed ID: 24368195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thallium in the hydrosphere of south west England.
    Law S; Turner A
    Environ Pollut; 2011 Dec; 159(12):3484-9. PubMed ID: 21925780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predominance of aqueous Tl(I) species in the river system downstream from the abandoned Carnoulès mine (Southern France).
    Casiot C; Egal M; Bruneel O; Verma N; Parmentier M; Elbaz-Poulichet F
    Environ Sci Technol; 2011 Mar; 45(6):2056-64. PubMed ID: 21332194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inventory of aquatic contaminant flux arising from historical metal mining in England and Wales.
    Mayes WM; Potter HA; Jarvis AP
    Sci Total Environ; 2010 Aug; 408(17):3576-83. PubMed ID: 20483448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comment on "predominance of aqueous Tl(I) species in the river system downstream from the abandoned Carnoules mine (Southern France)".
    Smeaton CM; Weisener CG; Fryer BJ
    Environ Sci Technol; 2012 Feb; 46(4):2473-4; author reply 2475-6. PubMed ID: 22243428
    [No Abstract]   [Full Text] [Related]  

  • 6. Influence of environmental and anthropogenic parameters on thallium oxidation state in natural waters.
    Campanella B; D'Ulivo A; Ghezzi L; Onor M; Petrini R; Bramanti E
    Chemosphere; 2018 Apr; 196():1-8. PubMed ID: 29289846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold mining impact on riverine heavy metal transport in a sparsely monitored region: the upper Lake Baikal Basin case.
    Thorslund J; Jarsjö J; Chalov SR; Belozerova EV
    J Environ Monit; 2012 Oct; 14(10):2780-92. PubMed ID: 22976382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface water characterization of three rivers in the lead/zinc mining region of northeastern Macedonia.
    Ramani S; Dragun Z; Kapetanović D; Kostov V; Jordanova M; Erk M; Hajrulai-Musliu Z
    Arch Environ Contam Toxicol; 2014 May; 66(4):514-28. PubMed ID: 24626792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human exposure to thallium through tap water: A study from Valdicastello Carducci and Pietrasanta (northern Tuscany, Italy).
    Campanella B; Onor M; D'Ulivo A; Giannecchini R; D'Orazio M; Petrini R; Bramanti E
    Sci Total Environ; 2016 Apr; 548-549():33-42. PubMed ID: 26799805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of a disused mine on uranium transport in the River Fal, South West England.
    Moliner-Martinez Y; Campíns-Falcó P; Worsfold PJ; Keith-Roach MJ
    J Environ Monit; 2004 Nov; 6(11):907-13. PubMed ID: 15536505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thallium occurrence and partitioning in soils and sediments affected by mining activities in Madrid province (Spain).
    Gomez-Gonzalez MA; Garcia-Guinea J; Laborda F; Garrido F
    Sci Total Environ; 2015 Dec; 536():268-278. PubMed ID: 26218566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomonitoring of thallium availability in two estuaries of southwest England.
    Turner A; Turner D; Braungardt C
    Mar Pollut Bull; 2013 Apr; 69(1-2):172-7. PubMed ID: 23465575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of Tl (I) and Tl (III) based on microcolumn separation through ICP-MS in river sediment pore water.
    Rasool A; Xiao T; Ali S; Ali W; Nasim W
    Environ Sci Pollut Res Int; 2020 Mar; 27(9):9686-9696. PubMed ID: 31925682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A national strategy for identification, prioritisation and management of pollution from abandoned non-coal mine sites in England and Wales. I. Methodology development and initial results.
    Mayes WM; Johnston D; Potter HA; Jarvis AP
    Sci Total Environ; 2009 Oct; 407(21):5435-47. PubMed ID: 19660783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of indium, thallium and bismuth in the environmental water of Japan.
    Miyazaki A; Kimura A; Tao H
    Bull Environ Contam Toxicol; 2012 Dec; 89(6):1211-5. PubMed ID: 23052588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geochemical behaviors of antimony in mining-affected water environment (Southwest China).
    Li L; Tu H; Zhang S; Wu L; Wu M; Tang Y; Wu P
    Environ Geochem Health; 2019 Dec; 41(6):2397-2411. PubMed ID: 30972516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the water quality of Kłodnica River catchment using self-organizing maps.
    Olkowska E; Kudłak B; Tsakovski S; Ruman M; Simeonov V; Polkowska Z
    Sci Total Environ; 2014 Apr; 476-477():477-84. PubMed ID: 24496021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stormflow hydrochemistry of a river draining an abandoned metal mine: the Afon Twymyn, central Wales.
    Byrne P; Reid I; Wood PJ
    Environ Monit Assess; 2013 Mar; 185(3):2817-32. PubMed ID: 22752965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury speciation in the Valdeazogues River-La Serena Reservoir system: influence of Almadén (Spain) historic mining activities.
    Berzas Nevado JJ; Rodríguez Martín-Doimeadios RC; Moreno MJ
    Sci Total Environ; 2009 Mar; 407(7):2372-82. PubMed ID: 19167027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thallium in aquatic environments and the factors controlling Tl behavior.
    Zhuang W; Song J
    Environ Sci Pollut Res Int; 2021 Jul; 28(27):35472-35487. PubMed ID: 34021893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.