These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24368273)

  • 1. Syntrophic interactions between H2-scavenging and anode-respiring bacteria can improve current density in microbial electrochemical cells.
    Gao Y; Ryu H; Santo Domingo JW; Lee HS
    Bioresour Technol; 2014 Feb; 153():245-53. PubMed ID: 24368273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of competitive microorganisms using anaerobic membrane bioreactors as pretreatment to microbial electrochemical cells.
    Dhar BR; Gao Y; Yeo H; Lee HS
    Bioresour Technol; 2013 Nov; 148():208-14. PubMed ID: 24047682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Syntrophic interactions among anode respiring bacteria (ARB) and Non-ARB in a biofilm anode: electron balances.
    Parameswaran P; Torres CI; Lee HS; Krajmalnik-Brown R; Rittmann BE
    Biotechnol Bioeng; 2009 Jun; 103(3):513-23. PubMed ID: 19191353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of homoacetogenic bacteria as efficient hydrogen scavengers in microbial electrochemical cells (MXCs).
    Parameswaran P; Torres CI; Kang DW; Rittmann BE; Krajmalnik-Brown R
    Water Sci Technol; 2012; 65(1):1-6. PubMed ID: 22173401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen consumption in microbial electrochemical systems (MXCs): the role of homo-acetogenic bacteria.
    Parameswaran P; Torres CI; Lee HS; Rittmann BE; Krajmalnik-Brown R
    Bioresour Technol; 2011 Jan; 102(1):263-71. PubMed ID: 20430615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of volatile fatty acids on microbial electrolysis cell performance.
    Yang N; Hafez H; Nakhla G
    Bioresour Technol; 2015 Oct; 193():449-55. PubMed ID: 26159302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial community structure in a biofilm anode fed with a fermentable substrate: the significance of hydrogen scavengers.
    Parameswaran P; Zhang H; Torres CI; Rittmann BE; Krajmalnik-Brown R
    Biotechnol Bioeng; 2010 Jan; 105(1):69-78. PubMed ID: 19688868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enrichment and analysis of anode-respiring bacteria from diverse anaerobic inocula.
    Miceli JF; Parameswaran P; Kang DW; Krajmalnik-Brown R; Torres CI
    Environ Sci Technol; 2012 Sep; 46(18):10349-55. PubMed ID: 22909141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of consumption of fermentation products by anode-respiring bacteria.
    Torres CI; Marcus AK; Rittmann BE
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):689-97. PubMed ID: 17909786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions.
    Zhang J; Zhang Y; Quan X; Chen S; Afzal S
    Bioresour Technol; 2013 May; 136():273-80. PubMed ID: 23567691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors.
    Shehab N; Li D; Amy GL; Logan BE; Saikaly PE
    Appl Microbiol Biotechnol; 2013 Nov; 97(22):9885-95. PubMed ID: 23775270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: synergistic effect of biocathode microenvironment.
    Mohan SV; Srikanth S
    Bioresour Technol; 2011 Nov; 102(22):10210-20. PubMed ID: 21920735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forming microbial anodes with acetate addition decreases their capability to treat raw paper mill effluent.
    Ketep SF; Bergel A; Bertrand M; Barakat M; Achouak W; Fourest E
    Bioresour Technol; 2014 Jul; 164():285-91. PubMed ID: 24862005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge.
    Lu L; Xing D; Ren N
    Water Res; 2012 May; 46(7):2425-34. PubMed ID: 22374298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization.
    Torres CI; Krajmalnik-Brown R; Parameswaran P; Marcus AK; Wanger G; Gorby YA; Rittmann BE
    Environ Sci Technol; 2009 Dec; 43(24):9519-24. PubMed ID: 20000550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electricity generation from food wastes and microbial community structure in microbial fuel cells.
    Jia J; Tang Y; Liu B; Wu D; Ren N; Xing D
    Bioresour Technol; 2013 Sep; 144():94-9. PubMed ID: 23859985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors.
    Jung S; Regan JM
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):393-402. PubMed ID: 17786426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell.
    Lee HS; Rittmann BE
    Environ Sci Technol; 2010 Feb; 44(3):948-54. PubMed ID: 20030379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of a microbial electrochemical cell using the proton condition in biofilm (PCBIOFILM) model.
    Marcus AK; Torres CI; Rittmann BE
    Bioresour Technol; 2011 Jan; 102(1):253-62. PubMed ID: 20395137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.