BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24368274)

  • 1. Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption.
    Grimi N; Dubois A; Marchal L; Jubeau S; Lebovka NI; Vorobiev E
    Bioresour Technol; 2014 Feb; 153():254-9. PubMed ID: 24368274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of high-voltage electrical discharges and high-pressure homogenization for recovery of intracellular compounds from microalgae Parachlorella kessleri.
    Zhang R; Grimi N; Marchal L; Vorobiev E
    Bioprocess Biosyst Eng; 2019 Jan; 42(1):29-36. PubMed ID: 30229328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-step procedure for selective recovery of bio-molecules from microalga Nannochloropsis oculata assisted by high voltage electrical discharges.
    Zhang R; Marchal L; Lebovka N; Vorobiev E; Grimi N
    Bioresour Technol; 2020 Apr; 302():122893. PubMed ID: 32018087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical cell disruption for lipid extraction from microalgal biomass.
    Halim R; Rupasinghe TW; Tull DL; Webley PA
    Bioresour Technol; 2013 Jul; 140():53-63. PubMed ID: 23672939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging techniques for cell disruption and extraction of valuable bio-molecules of microalgae Nannochloropsis sp.
    Zhang R; Parniakov O; Grimi N; Lebovka N; Marchal L; Vorobiev E
    Bioprocess Biosyst Eng; 2019 Feb; 42(2):173-186. PubMed ID: 30470909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically assisted extraction of soluble matter from chardonnay grape skins for polyphenol recovery.
    Boussetta N; Lebovka N; Vorobiev E; Adenier H; Bedel-Cloutour C; Lanoisellé JL
    J Agric Food Chem; 2009 Feb; 57(4):1491-7. PubMed ID: 19173604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy consumption and water-soluble protein release by cell wall disruption of Nannochloropsis gaditana.
    Safi C; Cabas Rodriguez L; Mulder WJ; Engelen-Smit N; Spekking W; van den Broek LAM; Olivieri G; Sijtsma L
    Bioresour Technol; 2017 Sep; 239():204-210. PubMed ID: 28521230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Pulsed Electric Fields and High-Pressure Homogenization in Biorefinery Cascade of
    Carullo D; Abera BD; Scognamiglio M; Donsì F; Ferrari G; Pataro G
    Foods; 2022 Feb; 11(3):. PubMed ID: 35159621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsed Electric Fields-Assisted Extraction of Valuable Compounds From Arthrospira Platensis: Effect of Pulse Polarity and Mild Heating.
    Carullo D; Pataro G; Donsì F; Ferrari G
    Front Bioeng Biotechnol; 2020; 8():551272. PubMed ID: 33015015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative evaluation of the ease of rupture of industrially promising microalgae by high pressure homogenization.
    Spiden EM; Yap BH; Hill DR; Kentish SE; Scales PJ; Martin GJ
    Bioresour Technol; 2013 Jul; 140():165-71. PubMed ID: 23688668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell disruption for microalgae biorefineries.
    Günerken E; D'Hondt E; Eppink MH; Garcia-Gonzalez L; Elst K; Wijffels RH
    Biotechnol Adv; 2015; 33(2):243-60. PubMed ID: 25656098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid releasing characteristics of microalgae species through continuous ultrasonication.
    Natarajan R; Ang WM; Chen X; Voigtmann M; Lau R
    Bioresour Technol; 2014 Apr; 158():7-11. PubMed ID: 24583912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of microalgae cell disruption by ultrasonic treatment.
    Gerde JA; Montalbo-Lomboy M; Yao L; Grewell D; Wang T
    Bioresour Technol; 2012 Dec; 125():175-81. PubMed ID: 23026331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field-temperature treatment.
    Postma PR; Pataro G; Capitoli M; Barbosa MJ; Wijffels RH; Eppink MH; Olivieri G; Ferrari G
    Bioresour Technol; 2016 Mar; 203():80-8. PubMed ID: 26722806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds.
    Poojary MM; Barba FJ; Aliakbarian B; Donsì F; Pataro G; Dias DA; Juliano P
    Mar Drugs; 2016 Nov; 14(11):. PubMed ID: 27879659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic pre-treatment of microalgae cells for enhanced extraction of proteins.
    Al-Zuhair S; Ashraf S; Hisaindee S; Darmaki NA; Battah S; Svistunenko D; Reeder B; Stanway G; Chaudhary A
    Eng Life Sci; 2017 Feb; 17(2):175-185. PubMed ID: 32624765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraction assisted by pulsed electric energy as a potential tool for green and sustainable recovery of nutritionally valuable compounds from mango peels.
    Parniakov O; Barba FJ; Grimi N; Lebovka N; Vorobiev E
    Food Chem; 2016 Feb; 192():842-8. PubMed ID: 26304419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-refinery of Chlorella sorokiniana with pulsed electric field pre-treatment.
    Leonhardt L; Käferböck A; Smetana S; de Vos R; Toepfl S; Parniakov O
    Bioresour Technol; 2020 Apr; 301():122743. PubMed ID: 31945684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy evaluation of algal cell disruption by high pressure homogenisation.
    Yap BHJ; Dumsday GJ; Scales PJ; Martin GJO
    Bioresour Technol; 2015 May; 184():280-285. PubMed ID: 25435068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the lipid extraction performance in a cascade process for Scenedesmus almeriensis biorefinery.
    Papachristou I; Akaberi S; Silve A; Navarro-López E; Wüstner R; Leber K; Nazarova N; Müller G; Frey W
    Biotechnol Biofuels; 2021 Jan; 14(1):20. PubMed ID: 33446259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.