These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 24368336)
21. Oligomerization of dopamine transporters visualized in living cells by fluorescence resonance energy transfer microscopy. Sorkina T; Doolen S; Galperin E; Zahniser NR; Sorkin A J Biol Chem; 2003 Jul; 278(30):28274-83. PubMed ID: 12746456 [TBL] [Abstract][Full Text] [Related]
22. Biosensors of DsRed as FRET partner with CFP or GFP for quantitatively imaging induced activation of Rac, Cdc42 in living cells. Liu R; Ren D; Liu Y; Deng Y; Sun B; Zhang Q; Guo X Mol Imaging Biol; 2011 Jun; 13(3):424-431. PubMed ID: 20683671 [TBL] [Abstract][Full Text] [Related]
23. Fluorescent peptide dH3w: A sensor for environmental monitoring of mercury (II). Siepi M; Oliva R; Petraccone L; Del Vecchio P; Ricca E; Isticato R; Lanzilli M; Maglio O; Lombardi A; Leone L; Notomista E; Donadio G PLoS One; 2018; 13(10):e0204164. PubMed ID: 30303991 [TBL] [Abstract][Full Text] [Related]
24. A plasmid containing the human metallothionein II gene can function as an antibody-assisted electrophoretic biosensor for heavy metals. Wooten DC; Starr CR; Lyon WJ J Immunotoxicol; 2016; 13(1):55-63. PubMed ID: 25594566 [TBL] [Abstract][Full Text] [Related]
25. High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein. Millington M; Grindlay GJ; Altenbach K; Neely RK; Kolch W; Bencina M; Read ND; Jones AC; Dryden DT; Magennis SW Biophys Chem; 2007 May; 127(3):155-64. PubMed ID: 17336446 [TBL] [Abstract][Full Text] [Related]
26. Organization of calcium channel beta1a subunits in triad junctions in skeletal muscle. Leuranguer V; Papadopoulos S; Beam KG J Biol Chem; 2006 Feb; 281(6):3521-7. PubMed ID: 16317008 [TBL] [Abstract][Full Text] [Related]
27. An ion-insensitive cAMP biosensor for long term quantitative ratiometric fluorescence resonance energy transfer (FRET) measurements under variable physiological conditions. Salonikidis PS; Niebert M; Ullrich T; Bao G; Zeug A; Richter DW J Biol Chem; 2011 Jul; 286(26):23419-31. PubMed ID: 21454618 [TBL] [Abstract][Full Text] [Related]
28. Real-time detection of cellular death receptor-4 activation by fluorescence resonance energy transfer. Dereli-Korkut Z; Gandhok H; Zeng LG; Waqas S; Jiang X; Wang S Biotechnol Bioeng; 2013 May; 110(5):1396-404. PubMed ID: 23239419 [TBL] [Abstract][Full Text] [Related]
30. An optical biosensor from green fluorescent Escherichia coli for the evaluation of single and combined heavy metal toxicities. Futra D; Heng LY; Ahmad A; Surif S; Ling TL Sensors (Basel); 2015 May; 15(6):12668-81. PubMed ID: 26029952 [TBL] [Abstract][Full Text] [Related]
31. ATP changes the fluorescence lifetime of cyan fluorescent protein via an interaction with His148. Borst JW; Willemse M; Slijkhuis R; van der Krogt G; Laptenok SP; Jalink K; Wieringa B; Fransen JA PLoS One; 2010 Nov; 5(11):e13862. PubMed ID: 21079777 [TBL] [Abstract][Full Text] [Related]
32. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193 [TBL] [Abstract][Full Text] [Related]
33. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Tramier M; Zahid M; Mevel JC; Masse MJ; Coppey-Moisan M Microsc Res Tech; 2006 Nov; 69(11):933-9. PubMed ID: 16941642 [TBL] [Abstract][Full Text] [Related]
34. Imaging Erg and Jun transcription factor interaction in living cells using fluorescence resonance energy transfer analyses. Camuzeaux B; Spriet C; Héliot L; Coll J; Duterque-Coquillaud M Biochem Biophys Res Commun; 2005 Jul; 332(4):1107-14. PubMed ID: 15922298 [TBL] [Abstract][Full Text] [Related]
35. The use of a stably expressed FRET biosensor for determining the potency of cancer drugs. Bozza WP; Di X; Takeda K; Rivera Rosado LA; Pariser S; Zhang B PLoS One; 2014; 9(9):e107010. PubMed ID: 25188024 [TBL] [Abstract][Full Text] [Related]
36. Quantification of protein interaction in living cells by two-photon spectral imaging with fluorescent protein fluorescence resonance energy transfer pair devoid of acceptor bleed-through. Kim J; Li X; Kang MS; Im KB; Genovesio A; Grailhe R Cytometry A; 2012 Feb; 81(2):112-9. PubMed ID: 22076866 [TBL] [Abstract][Full Text] [Related]
37. Monitoring protein interactions in the living cell through the fluorescence decays of the cyan fluorescent protein. Grailhe R; Merola F; Ridard J; Couvignou S; Le Poupon C; Changeux JP; Laguitton-Pasquier H Chemphyschem; 2006 Jul; 7(7):1442-54. PubMed ID: 16739159 [TBL] [Abstract][Full Text] [Related]
38. Resonance energy transfer between green fluorescent protein variants: complexities revealed with myosin fusion proteins. Zeng W; Seward HE; Málnási-Csizmadia A; Wakelin S; Woolley RJ; Cheema GS; Basran J; Patel TR; Rowe AJ; Bagshaw CR Biochemistry; 2006 Sep; 45(35):10482-91. PubMed ID: 16939200 [TBL] [Abstract][Full Text] [Related]
39. Fluorescence resonance energy transfer analysis reveals the existence of endothelin-A and endothelin-B receptor homodimers. Gregan B; Schaefer M; Rosenthal W; Oksche A J Cardiovasc Pharmacol; 2004 Nov; 44 Suppl 1():S30-3. PubMed ID: 15838305 [TBL] [Abstract][Full Text] [Related]
40. FRET-based evaluation of Bid cleavage in a single primary cultured neuron. Nakazawa H; Nishimura A; Suga K; Mishima T; Yorozu T; Iijima T Neurosci Lett; 2013 Mar; 536():24-8. PubMed ID: 23262091 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]