BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 24368602)

  • 1. Recent syntheses of 1,2,3,4-tetrahydroquinolines, 2,3-dihydro-4(1H)-quinolinones and 4(1H)-quinolinones using domino reactions.
    Nammalwar B; Bunce RA
    Molecules; 2013 Dec; 19(1):204-32. PubMed ID: 24368602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ruthenium-catalyzed cyclization of anilides with substituted propiolates or acrylates: an efficient route to 2-quinolinones.
    Manikandan R; Jeganmohan M
    Org Lett; 2014 Jul; 16(13):3568-71. PubMed ID: 24956409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel approach to 3,4-dihydro-2(1H)-quinolinone derivatives via cyclopropane ring expansion.
    Tsuritani T; Yamamoto Y; Kawasaki M; Mase T
    Org Lett; 2009 Mar; 11(5):1043-5. PubMed ID: 19193029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-activity relationships of non-peptide vasopressin V1a antagonists: 1-(1-multi-substituted benzoyl 4-piperidyl)-3,4-dihydro-2(1H)-quinolinones.
    Kondo K; Ogawa H; Nakaya K; Tominaga M; Yabuuchi Y
    Chem Pharm Bull (Tokyo); 1996 Apr; 44(4):725-33. PubMed ID: 8681404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New approach to 2-quinolinones.
    Huang CC; Chang NC
    Org Lett; 2008 Feb; 10(4):673-6. PubMed ID: 18205376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective endo and exo iodocyclizations in the synthesis of quinolines and indoles.
    Hessian KO; Flynn BL
    Org Lett; 2006 Jan; 8(2):243-6. PubMed ID: 16408885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly enantioselective synthesis of polysubstituted tetrahydroquinolines via organocatalytic Michael/Aza-Henry tandem reactions.
    Jia ZX; Luo YC; Xu PF
    Org Lett; 2011 Mar; 13(5):832-5. PubMed ID: 21288007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly enantioselective synthesis of tetrahydroquinolines via cobalt(II)-catalyzed tandem 1,5-hydride transfer/cyclization.
    Cao W; Liu X; Wang W; Lin L; Feng X
    Org Lett; 2011 Feb; 13(4):600-3. PubMed ID: 21218793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrosynthesis of 3-chloro-1,4-disubstituted-2(1H)- quinolinones and 3,3-dichloro-4-hydroxy-1,4-disubstituted- 3,4-dihydro-2(1H)-quinolinones, as well as a new convenient process to dioxindoles.
    Batanero B; Barba F
    J Org Chem; 2003 May; 68(9):3706-9. PubMed ID: 12713384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly regio-, diastereo- and enantioselective one-pot gold/chiral Brønsted acid-catalysed cascade synthesis of bioactive diversely substituted tetrahydroquinolines.
    Liu XY; Xiao YP; Siu FM; Ni LC; Chen Y; Wang L; Che CM
    Org Biomol Chem; 2012 Sep; 10(35):7208-19. PubMed ID: 22785458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Naphthalenes and Quinolines by Domino Reactions of Morita-Baylis-Hillman Acetates.
    Annor-Gyamfi JK; Ametsetor E; Meraz K; Bunce RA
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33172000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of quinolinones with palladium-catalyzed oxidative annulation between acrylamides and arynes.
    Wang W; Peng X; Qin X; Zhao X; Ma C; Tung CH; Xu Z
    J Org Chem; 2015 Mar; 80(5):2835-41. PubMed ID: 25686292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3-Nitro-3,4-dihydro-2(1H)-quinolones. Excitatory amino acid antagonists acting at glycine-site NMDA and (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors.
    Carling RW; Leeson PD; Moore KW; Smith JD; Moyes CR; Mawer IM; Thomas S; Chan T; Baker R; Foster AC
    J Med Chem; 1993 Oct; 36(22):3397-408. PubMed ID: 8230130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concise enantioselective syntheses of quinolactacins A and B through alternative Winterfeldt oxidation.
    Zhang X; Jiang W; Sui Z
    J Org Chem; 2003 May; 68(11):4523-6. PubMed ID: 12762761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Annulation Reaction of 3-Acylmethylidene Oxindoles with Huisgen Zwitterions and Its Applications in the Syntheses of Pyrrolo[4,3,2-de]quinolinones and Marine Alkaloids Ammosamides.
    Yang C; Chen X; Tang T; He Z
    Org Lett; 2016 Mar; 18(6):1486-9. PubMed ID: 26938739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and cytotoxic activity of substituted 2-phenyl-3-hydroxy-4(1H)-quinolinones-7-carboxylic acids and their phenacyl esters.
    Soural M; Hlavác J; Hradil P; Frysová I; Hajdúch M; Bertolasi V; Malon M
    Eur J Med Chem; 2006 Apr; 41(4):467-74. PubMed ID: 16540209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approaches for introducing high molecular diversity in scaffolds: fast parallel synthesis of highly substituted 1H-quinolin-4-one libraries.
    Kuznetsov V; Gorohovsky S; Levy A; Meir S; Shkoulev V; Menashe N; Greenwald M; Aizikovich A; Ofer D; Byk G; Gellerman G
    Mol Divers; 2004; 8(4):437-48. PubMed ID: 15612649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FeCl3-catalyzed stereoselective construction of spirooxindole tetrahydroquinolines via tandem 1,5-hydride transfer/ring closure.
    Han YY; Han WY; Hou X; Zhang XM; Yuan WC
    Org Lett; 2012 Aug; 14(16):4054-7. PubMed ID: 22860987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Total synthesis of aurachins C, D, and L, and a structurally simplified analog of aurachin C.
    Enomoto M; Kitagawa W; Yasutake Y; Shimizu H
    Biosci Biotechnol Biochem; 2014; 78(8):1324-7. PubMed ID: 25130733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ru-catalyzed synthesis of dihydrofuroquinolines from azido-cyclopropyl ketones.
    Yang W; Xu L; Chen Z; Zhang L; Miao M; Ren H
    Org Lett; 2013 Mar; 15(6):1282-5. PubMed ID: 23432000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.