BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24368689)

  • 1. Predicting the effects of 8C2, a monoclonal anti-topotecan antibody, on plasma and tissue disposition of topotecan.
    Shah DK; Balthasar JP
    J Pharmacokinet Pharmacodyn; 2014 Feb; 41(1):55-69. PubMed ID: 24368689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PK/TD modeling for prediction of the effects of 8C2, an anti-topotecan mAb, on topotecan-induced toxicity in mice.
    Shah DK; Balthasar JP
    Int J Pharm; 2014 Apr; 465(1-2):228-38. PubMed ID: 24508555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of PBPK modeling to predict monoclonal antibody disposition in plasma and tissues in mouse models of human colorectal cancer.
    Abuqayyas L; Balthasar JP
    J Pharmacokinet Pharmacodyn; 2012 Dec; 39(6):683-710. PubMed ID: 23184417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Contrast-Enhanced Magnetic Resonance Imaging for the Prediction of Monoclonal Antibody Tumor Disposition.
    Bordeau BM; Polli JR; Schweser F; Grimm HP; Richter WF; Balthasar JP
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiologically based pharmacokinetic model for topotecan in mice.
    Shah DK; Balthasar JP
    J Pharmacokinet Pharmacodyn; 2011 Feb; 38(1):121-42. PubMed ID: 21104004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of an anti-vascular endothelial growth factor antibody in a pharmacokinetic strategy to increase the efficacy of intraperitoneal chemotherapy.
    Shah DK; Shin BS; Veith J; Tóth K; Bernacki RJ; Balthasar JP
    J Pharmacol Exp Ther; 2009 May; 329(2):580-91. PubMed ID: 19233938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human.
    Shah DK; Betts AM
    J Pharmacokinet Pharmacodyn; 2012 Feb; 39(1):67-86. PubMed ID: 22143261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monoclonal antibody disposition: a simplified PBPK model and its implications for the derivation and interpretation of classical compartment models.
    Fronton L; Pilari S; Huisinga W
    J Pharmacokinet Pharmacodyn; 2014 Apr; 41(2):87-107. PubMed ID: 24493102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interstitial IgG antibody pharmacokinetics assessed by combined in vivo- and physiologically-based pharmacokinetic modelling approaches.
    Eigenmann MJ; Karlsen TV; Krippendorff BF; Tenstad O; Fronton L; Otteneder MB; Wiig H
    J Physiol; 2017 Dec; 595(24):7311-7330. PubMed ID: 28960303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice.
    Garg A; Balthasar JP
    J Pharmacokinet Pharmacodyn; 2007 Oct; 34(5):687-709. PubMed ID: 17636457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies.
    Glassman PM; Balthasar JP
    J Pharmacokinet Pharmacodyn; 2016 Aug; 43(4):427-46. PubMed ID: 27377311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Second-generation minimal physiologically-based pharmacokinetic model for monoclonal antibodies.
    Cao Y; Balthasar JP; Jusko WJ
    J Pharmacokinet Pharmacodyn; 2013 Oct; 40(5):597-607. PubMed ID: 23996115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of monoclonal antibody pharmacokinetics in humans using a minimal physiologically based model.
    Li L; Gardner I; Dostalek M; Jamei M
    AAPS J; 2014 Sep; 16(5):1097-109. PubMed ID: 25004823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a physiologically-based pharmacokinetic model for ocular disposition of monoclonal antibodies in rabbits.
    Bussing D; K Shah D
    J Pharmacokinet Pharmacodyn; 2020 Dec; 47(6):597-612. PubMed ID: 32876799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A translational platform PBPK model for antibody disposition in the brain.
    Chang HY; Wu S; Meno-Tetang G; Shah DK
    J Pharmacokinet Pharmacodyn; 2019 Aug; 46(4):319-338. PubMed ID: 31115858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-pore physiologically based pharmacokinetic model with de novo derived parameters for predicting plasma PK of different size protein therapeutics.
    Li Z; Shah DK
    J Pharmacokinet Pharmacodyn; 2019 Jun; 46(3):305-318. PubMed ID: 31028591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a PBPK model for monoclonal antibodies and simulation of human and mice PBPK of a radiolabelled monoclonal antibody.
    Heiskanen T; Heiskanen T; Kairemo K
    Curr Pharm Des; 2009; 15(9):988-1007. PubMed ID: 19275663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of near infrared fluorescent labeling of monoclonal antibodies as a tool for tissue distribution.
    Conner KP; Rock BM; Kwon GK; Balthasar JP; Abuqayyas L; Wienkers LC; Rock DA
    Drug Metab Dispos; 2014 Nov; 42(11):1906-13. PubMed ID: 25209366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scale-up of a physiologically-based pharmacokinetic model to predict the disposition of monoclonal antibodies in monkeys.
    Glassman PM; Chen Y; Balthasar JP
    J Pharmacokinet Pharmacodyn; 2015 Oct; 42(5):527-40. PubMed ID: 26364301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of knockout mouse models to investigate the influence of FcγR on the tissue distribution and elimination of 8C2, a murine IgG1 monoclonal antibody.
    Abuqayyas L; Balthasar JP
    Int J Pharm; 2012 Dec; 439(1-2):8-16. PubMed ID: 23018115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.